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BIFURCATIONS IN IMPULSIVE SYSTEMS

Anashkin O.V.1, Yusupova O.V.2

1V. I. Vernadsky Crimean Federal University,
Simferopol, Russia; oanashkin@yandex.ru

2V. I. Vernadsky Crimean Federal University,
Simferopol, Russia; olgayusupova@mail.ru

Many evolutionary processes in the real world are characterized by sud-
den changes at certain times. These changes are called to be impulsive
phenomena [1, 3], which are widespread in modeling in mechanics, electron-
ics, biology, neural networks, medicine, and social sciences. An impulsive
differential equation is one of the basic instruments to understand the role
of discontinuity better for the real world problems.

If the impulses occur at fixed times, the mathematical model of this
process will be given by the following impulsive system [1]

ẋ = f(t, x, α), t ̸= tk, x(t+k ) = hk(x(tk), α), (1)

where {tk}k∈Z is a strictly increasing real sequence of impulse times that is
unbounded on R, x(t+) = lims→t+0 x(s), α is a numeric or vector param-
eter, f(t, 0, α) = 0, hk(0, α) = 0. Introduce a sequence of postive numbers
{θk = tk+1 − tk}k∈Z. We take the typical convention that piecewise smooth
solutions of the impulsive system are continuous from the left.

We will discuss a local bifurcations in the parameter-dependent sys-
tem (1). If system (1) is periodic, i.e. θk+p = θk, hk+p = hk, f(t+ T, x) =
f(t, x) and tk+p = tk + T (or θ1 + · · · + θp = T ) then the problem can be
reduced to a problem in discrete time (see, for instance, [2, 3]).

Here we study a case, when {θk}k∈Z is almost periodic sequence. More-
over, we admit for simplicity that the system (1) is “autonomous” system
of order 2:

ẋ = A(α)x+ f(x, α), t ̸= tk, x(t+k ) = B(α)x(tk) + h(x(tk), α), (2)

where A ∈ R2×2, f(x, α) = o(|x|), h(x, α) = o(|x|) as |x| → 0. Solutions
of the impulsive system are not continuous thus we need some definitions
from [1].

A sequence {xk} ∈ Rn is called almost periodic if for any ε > 0 there
exists a relatively dense set of its ε-almost periods, i.e. there exists such a

13
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natural numberN that, for an arbitrary s ∈ Z, there is at least one number p
in the segment [s, s+N ], for which ∥xk+p−xk∥ < ε for all k ∈ Z. The family

of the sequences {tjk = tk+j − tk}k∈Z, j ∈ Z, will be called equipotentially
almost periodic if for an arbitrary ε > 0 there exists a relatively dense set
of ε-almost periods, that are common to all the sequences {tjk}k∈Z.

Let a function φ : R → Rn be piecewise continuous with first kind discon-
tinuities at the points of a fixed sequence {tk} and the family of sequences
{tjk}, k, j ∈ Z, is equipotentially almost periodic. We call a function φ al-
most periodic if: (a) for any ε > 0 there exists a positive number δ = δ(ε)
such that if the points t′ and t′′ belong to the same interval of continuity
and |t′ − t′′| < δ, then ∥φ(t′) − φ(t′′)∥ < ε; (b) for any ε > 0 there ex-
ists a relatively dense set Γ of ε-almost periods such that if τ ∈ Γ, then
∥φ(t+ τ)− φ(t)∥ < ε for all t ∈ R which satisfy the condition |t− tk| > ε.

Let θ > 0 be a mean value of the almost periodic sequence {θk} then
θk = θ + δk and the mean of the sequence {δk} equals to zero.

Consider the linear impulsive system

ẋ = A0x, t ̸= tk, x(t+k ) = B0x(tk), (3)

where A0 = A(0), B0 = B(0). Suppose that A0B0 = B0A0 and a matrix
M = eθA0B0 has eigenvalues ρ1,2 = e±iγ , 0 < γ < π.

All solutions of the system (3) are bounded. Taking into account known
results [1] on existence of almost periodic solutions in impulsive systems (1)
we study conditions when in a small neighbourhood of x = 0 the system (2)
has a unique almost periodic solution which tends to zero when α tends to
0.

The theory of bifurcations in an impulsive system of arbitrary order
is based on the center manifold method. After reducing the problem to
equations on the center manifold, we can apply our approach.

It should be noted the first results on the study of bifurcations of solu-
tions of non-periodic impulsive systems and functional differential impulsive
systems presented in [3].
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CAUCHY PROBLEM FOR THE WAVE EQUATION
WITH A NONSMOOTH RIGHT-HAND SIDE

OF A SPECIAL FORM

Artyushin A.N.

Sobolev Institute of Mathematics, Novosibirsk, Russia;
alexsp3@yandex.ru

Let T > 0, K = {(t, x) ∈ (0, T ) × Rn : |x| < T − t}. We consider the
following problem

utt(t, x)−∆u(t, x) = F (t, x) = f(v(t, x)), (t, x) ∈ K, (1)

u(0, x) = 0, ut(0, x) = 0, |x| < T, (2)

with bounded f(z) ∈ C(R) and v(t, x) ∈ W 2
2 (K). We would like to

find a regular solution u(t, x) ∈ W 2
2 (K) to this problem. Note, that in

one-dimensional case it can be shown that the second derivatives utt(t, x),
uxt(t, x), uxx(t, x) are Lipschitz continuous provided F (t, x) is also Lips-
chitz continuous (see, for example, [1]). In multidimesional case a regular
solution exists if Ft(t, x) ∈ L2(K) or ∇F (t, x) ∈ Ln

2 (K). It turns out that a
regular solution exists even for f(z) ∈ C(R) if some monotonicity condition
for the function v(t, x) is fulfilled.

Let’s denote Ωt = {x : |x| < T − t}.
Theorem. Suppose that |f(z)| 6 M , v(t, x) ∈ W 2

2 (K) and for some
0 < γ < 1 and δ > 0

γvt(t, x) > |∇v(t, x)|+ δ, for a.e. (x, t) ∈ K.

Then there exists a unique solution to the problem (1)–(2) and for a.e.
t ∈ (0, T )

∥utt∥L2(Ωt) + ∥ut∥W 1
2 (Ωt) + ∥u∥W 2

2 (Ωt) 6 C(T, γ, δ)M∥v∥W 2
2 (K).

The main idea of the proof is to use some version of Duhamel’s principle.
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ON ASYMPTOTIC BEHAVIOR
OF SOLUTIONS TO HIGHER-ORDER

QUASILINEAR DIFFERENTIAL EQUATIONS
FOR DIFFERENT TYPES OF PERTURBATIONS

Astashova I.V.

Lomonosov Moscow State University, Moscow, Russia;
ast.diffiety@gmail.com

We study the problem of asymptotic behavior of solutions to equations

y(n)(x) +
n−1∑
j=0

aj(x)y
(j)(x) + p(x) |y(x)|k sgn y(x) = f(x)

with n ≥ 2, k > 1, and continuous functions p, f and aj . We will consider
this equation as a perturbation of more simple equation with f = 0. This
equation, in its turn, we will consider as a perturbation of the equation with
p = 0 or/and aj = 0.

Some previous results are formulated in [1–2]. In particular, the asymp-
totic behavior of its solutions vanishing at infinity is described.

The work is partially supported by the Russian Science Foundation (project

no. 20-11-20272).
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NON-UNIQUENESS OF CYCLES IN 3D
MOLECULAR REPRESSILATOR MODELS

Ayupova N.B.1, Golubyatnikov V.P.2, Kirillova N. E.3
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The following 3D dynamical system describes functioning of a simplest
molecular repressilator, see [1–3] for details and interpretations:

ẋ1 = L1(x3)− k1x1; ẋ2 = L2(x1)− k2x2; ẋ3 = L3(x2)− k3x3. (1)

1. In the case of piecewise-linear monotonically decreasing non-negative
functions Lj of the type

Lj(w) ≡ bj − pjℓj−1 for 0 ≤ w ≤ ℓj−1;

Lj(w) = bj − pjw for ℓj−1 ≤ w ≤ bjp
−1
j ; (2)

Lj = 0 for w ≥ bjp
−1
j

we find conditions of existence of several cycles in phase portraits of the
systems of the types (1), (2). Here and below, all parameters and variables
are positive, j = 1, 2, 3, and j − 1 := 3 for j = 1.

2. Let L = L(w) be a three-step function defined by

L(w) = 2a for 0 ≤ w < a− ε; L(w) = a+ ε for a− ε ≤ w < a;

L(w) = a− ε for a ≤ w < a+ ε; L(w) = 0 for w ≥ a+ ε. (3)

The cube Q := [a − ε, a + ε] × [a − ε, a + ε] × [a − ε, a + ε] is invariant
with respect to positive shifts along trajectories of the system (1), (3). In
the symmetric case k1 = k2 = k3 = 1, L1 = L2 = L3 = L, we obtain

Theorem. If a > 1 and ε is sufficiently small then the system

ẋj = L(xj−1)− xj ; j = 1, 2, 3;
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has at least two different cycles.
Exactly one of these cycles C1 is contained in the invariant “small”

cube Q; this cycle is stable. As in [4, 5], one can construct in Q an in-
variant surface Σ such that C1 ⊂ Σ ⊂ Q, and an invariant foliation such
that the invariant surface Σ is one of its leaves.

Other cycles of the system (1), (3) are not local, they do not intersect Q.
Remark. Previously, non-uniqueness of cycles was detected in similar

models of molecular repressilators in higher-dimension cases only, such as
5D, 15D, 18D etc., see [6, 7].

The authors were supported by the Russian Science Foundation (project no. 23-

21-00019).
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ON PROPERTIES OF THE NOETHERICITY
OF POLYHARMONIC OPERATORS
IN WEIGHTED SOBOLEV SPACES

Badardinov D.T.

Novosibirsk State University, Novosibirsk, Russia;
d.badardinov@g.nsu.ru

We consider equation

∆mu = f(x), x ∈ Rn, (1)

where f(x) ∈ Lp(R
n), supp f is compact.

The work is concerned with the question about existence and uniqueness
of solutions to equation (1) in the class of weighted Sobolev spacesW 2m

p, σ(R
n)

suggested by G.V. Demidenko in his work [1].
Definition. A function u(x) belongs to weighted Sobolev spaceW 2m

p, σ(R
n)

if there exist generalized derivatives

Dβ
xu(x), |β| ≤ 2m,

of u(x) in Rn, and∥∥∥(1 + |x|2m)−σ(1−|β|/2m)Dβ
xu(x), Lp(R

n)
∥∥∥ <∞.

The norm in the space W 2m
p, σ(R

n) is defined as∥∥u(x), W 2m
p,σ (R

n)
∥∥ =

∑
0≤|β|≤2m

∥∥∥(1 + |x|2m)−σ(1−|β|/2m)Dβ
xu(x), Lp(R

n)
∥∥∥ .

The research method is based on the construction of approximate solu-
tions to equation (1) using the method of integral representation of summable
functions f(x) ∈ Lp(R

n) suggested by S.V. Uspenskii in his work [2].
Some important results, extending those of G.V. Demidenko in [1], have

been achieved, among them:
Theorem 1. If n > 2m, σ ≥ n

2mp , then ∀ f(x) ∈ Lp(R
n), supp f is

compact, ∃u(x) ∈W 2m
p, σ(R

n) — a solution to equation (1), and the estimate
takes place: ∥∥u(x), W 2m

p, σ(R
n)
∥∥ ≤ c ∥f(x), Lp(R

n)∥ ,
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where c = c (supp f); for σ = n
2mp the solution is unique.

Theorem 2. If n > 2m, σ > n
2mp , then the solution is defined up to

polynomials Pj(x) of degree not greater than j:
if σ ∈

(
n

2mp + j
2m ,

n
2mp + j+1

2m

]
, j ≥ 0, then

ker ∆m = {Pj(x)},

i.e.
u(x) = upart.(x) + Pj(x).

Theorem 3. If n > 2m, σ ∈ [0, 1 − n
2mp′ ], N is natural number, such

that 1− n
2mp′ − N

2m < σ ≤ 1− n
2mp′ − N−1

2m , and∫
Rn

xβf(x) dx = 0, 0 ≤ |β| ≤ N − 1,

then ∀ f(x) ∈ Lp(R
n), supp f is compact, ∃ !u(x) ∈ W 2m

p, σ(R
n) — the solu-

tion to equation (1), and the estimate takes place:∥∥u(x), W 2m
p, σ(R

n)
∥∥ ≤ c ∥f(x), Lp(R

n)∥ ,

where c = c (supp f).
It’s worth mentioning that some results on solvability of elliptic equa-

tions in similar class of weighted Sobolev spaces have been achieved in the
works of R.C. McOwen (see, for example, [3]).
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FINDING THE DISCONTINUITY
SURFACES OF COEFFICIENTS

OF THE TRANSPORT EQUATION

Balakina E.Yu.

Sobolev Institute of Mathematics, Novosibirsk, Russia;
balakina@math.nsc.ru

Consider a non-stationary linear differential equation

∂f(t, r, ω,E)

∂t
+ ω · ∇rf(t, r, ω,E) + µ(t, r, E)f(t, r, ω,E) = J(t, r, ω,E).

This equation specifically describes the process of particle transfer through
a medium, with the following parameters: time is represented by the tem-
porary variable t, which falls within the interval t ∈ [0, T ]; spatial location is
denoted by the variable r, within a convex bounded area G; the unit vector
ω belongs to the set Ω = {ω ∈ R3 : |ω| = 1}; energy is represented by E,
falling within the interval I = [E1, E2], with E1 > 0 and E2 < ∞. The
function f(t, r, ω,E) signifies the particle flux at time t, position r, with
energy E, moving towards ω. The characteristics of the environment G are
defined by the functions µ and J . In addition to the equation, we have
initial and boundary conditions that determine the density of the incoming
flow h and the average outflow density H, with only the function H being
known.

The primary objective is to identify the internal structure of the envi-
ronment, denoted as G, by solving the problem of detecting discontinuity
surfaces in the coefficients µ and J within the equation. This research builds
upon the work of D. S. Anikonov [1]. The initial step involves studying the
direct problem of computing the flux density, represented as f , based on
the initial conditions and the incident flow density h. This problem bears
similarities to A. I. Prilepko’s work with continuous coefficients [2].

Furthermore, we introduce a special function, denoted as Ind(r), defined
as:

Ind(r) =

∣∣∣∣ ∇
T∫

d

∫
Ω

H(t, r + d(r, ω)ω, ω)dωdt

∣∣∣∣ .
This function depends on known data, where d(r, ω) represents the distance
from point r to the boundary ∂G in the direction of ω, and d signifies an area
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diameter of G. It has been proven that the function Ind takes unbounded
values only on the desired surfaces.
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ON POSITIVENESS OF THE CAUCHY FUNCTION
AND THE FUNDAMENTAL SOLUTION

FOR A NEUTRAL DIFFERENTIAL EQUATION

Balandin A. S.
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We study linear autonomous differential equation of neutral type

ẋ(t)− aẋ(t− h) + bx(t) + cx(t− h) = f(t), t ≥ 0, (1)

where a, b, c > 0, h > 0, f is a locally integrable function. This equation
arises in applications. For example, it describes dynamics of cell population,
motion of 2-dimensional elastic plates with friction, and ultrasonic flaw de-
tection. This equation is also interesting from the theoretical point of view,
which is confirmed by a large number of purely theoretical studies.

Transform the time scale t 7→ ht and the coefficients b 7→ hb, c 7→ hc,
and rewrite equation (1) in an equivalent form, which is more convenient
for our further study:

(I − aS)ẋ(t) + (bI + cS)x(t) = f(t), t ∈ R+, (2)

where

(Sy)(t) =

{
y(t− 1), if t ≥ 1,

0, if t < 1.

As is known [1], equation (2) with an initial condition admits a unique
solution in the class of locally absolutely continuous functions; moreover,
this solution has the following form [1, 2]:

x(t) = X(t)x(0) +

∫ t

0

Y (t− s)f(s) ds, t ∈ R+. (3)

The function X is called the fundamental solution and the function Y is
called the Cauchy function. Formula (3) is usually called the Cauchy for-
mula.

The fundamental solution X is a locally absolutely continuous function
and is uniquely dened as the solution to equation (2) for f = 0 satisfying
the initial condition x(0) = 1.
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On each interval (n, n+1), n ∈ N0, the function Y is absolutely contin-
uous but each point t = n is a discontinuity of the rst kind; moreover, we
have Y (n+ 0)− Y (n− 0) = an [2]. As is shown in [2, 3], the function Y is
uniquely determined in terms of the function X by the equality

(I − aS)Y (t) = X(t), t ∈ R+.

It follows from (3) that the behavior of any solution of equation (2) is
completely determined by properties of X and Y . In [4] we find necessary
and sufficient conditions for exponential stability and represent them in
geometric terms as a domain in the space of parameters. In this paper we
study the positiveness of the functions X and Y .

The characteristic function of (2) is

g(p) = p(1− ae−p) + b+ ce−p, p ∈ C.

Lemma. The operator I − aS is positively invertible on each finite
segment.

Theorem 1. The fundamental solution X of equation (2) is positive if
and only if the Cauchy function Y of equation (2) is positive.

Theorem 2. The fundamental solution X of equation (2) is positive if
and only if the function g has at least one real zero.

The author is supported by the Ministry of Science and Higher Education of

the Russian Federation (project no. FSNM-2023-0005).
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A NUMERICAL METHOD
FOR CONSENSUS CONTROL

OF LINEAR DELAY MULTI-AGENT SYSTEMS
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In this paper, the consensus control problem of leader-following linear
multi-agent systems with the input delay is investigated. We present a nec-
essary and sufficient condition for the leader-following consensus of linear
multi-agent systems with the input delay. Based on this necessary and suffi-
cient condition, the leader-following consensus problem can be transformed
into a distributed non-convex optimization problem.

Consider a multi-agent system consisting of N follower agents and a
leader. The dynamics of each follower agent is

ẋi(t) = Axi(t) +Bui(t), (1)

where xi(t) ∈ Rd is the state of the agent i, ui(t) ∈ Rm is the control input
of the agent i, and A ∈ Rd×d and B ∈ Rd×m are known constant matrices.
The leader, labeled as i = 0, has linear dynamics as

ẋ0(t) = Ax0(t), (2)

where x0(t) ∈ Rd is the state of the leader. Obviously, the leader’s dynamics
is independent of others, which acts as an external input to steer follower
agents.

The control law for the agent i is given as

ui(t) = K
∑
j∈Ni

aij [xi(t− τ)− xj(t− τ)]

+Kgi[xi(t− τ)− x0(t− τ)], i = 1, . . . , N, (3)

where τ > 0 is the input delay in the network and K ∈ Rm×d is a feedback
gain matrix to be designed later.

In order to analyze the leader-following consensus of the system (1)–(2),
the error variable between the state xi and x0 is denoted by δi = xi − x0,
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we obtain

δ̇i(t) = Aδi(t) +BK
∑
j∈Ni

aij [δi (t− τ)− δj (t− τ)] +BKgiδi (t− τ) , (4)

where i = 1, . . . , N .
Definition. The transition matrix of δi(t) in system (4) is defined as

Fi(K, t), which is the solution of the matrix differential equation

Ḟi(K, t) = AFi(K, t) +BK
∑
j∈Ni

aij [Fi (K, t− τ)− Fj (K, t− τ)]

+BKgiFi (K, t− τ)

under the condition{
Fi(K, 0) =

(
0d×(i−1)d Id×d 0d×(N−i)d

)
d×Nd

,

Fi(K, t) = 0d×Nd for t < 0,

where i = 1, . . . , N .
Theorem. Under the control law (3), the considered multi-agent system

(1)–(2) achieves the leader-following consensus if and only if there exists a
feedback gain matrices K such that

lim
T→∞

N∑
i=1

∫ T

0

λ ∥Fi(K,σ)∥2F dσ + ∥K∥2F

exists and is finite, where λ is a positive constant.
The authors were supported by the National Natural Science Foundation of

China (Grant No. 12271340 and No. 11971303), Natural Science Foundation of
Shanghai (21ZR1426400).
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The paper studies the solvability of boundary value problems for the
second-order integro-differential equations with integral terms of Volterra
type

utt(x, t)− h(t)∆u(x, t) + c(x, t)u(x, t) =

t∫
0

R(t, τ)(Bu)(x, τ)dτ + f(x, t).

A peculiarity of the equations under study is that the main part of the equa-
tions is a degenerate hyperbolic operator, and an operator can degenerate
in both a characteristic and non-characteristic way.

For the problems under study, theorems of existence and uniqueness of
regular solutions, i.e., solutions having all Sobolev generalized derivatives
included in the equations, are proved.
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THE ESTIMATES OF THE ALEXANDROV’S
n-WIDTH OF A COMPACT SET OF C∞-SMOOTH

FUNCTIONS ON A FINITE SEGMENT
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Two-sided qualified estimates of the Alexandrov’s n-width of a compact
set of infinitely smooth functions are obtained, boundedly embedded in the
space of continuous functions on a finite segment.

This work was carried out within the framework of the state contract of the

Sobolev Institute of Mathematics (project no. FWNF-2022-0008).
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Studying the spectrum of a linearized differential operator is one of the
most common methods for studying stability. However, some data from
physical experiments indicate that the spectrum of the linearized operator
does not accurately predict the development of instability. Some publica-
tions have previously suggested that this may be due to the size and position
of the spots in the so-called pseudospectrum [1].

The pseudospectrum (or ε-spectrum) is a set of complex numbers λ that
satisfy the estimate ∥(A− λI)−1∥ ≥ 1/ε at a fixed ε > 0. We assume that
eigenvalues united by one spot of the pseudospectrum may have properties
similar to those of multiple eigenvalues. Based on this assumption, we
created two algorithms for constructing the initial conditions of the Cauchy
problem for a system of linear ODEs, under which the solution will have
a local maximum in time. One of the algorithms is based on the use of
eigenvectors. Another involves using a matrix spectrum dichotomy [2] to
separate eigenvalues belonging to the same spot of the pseudospectrum.

Using these algorithms, solutions to the system of Navier–Stokes equa-
tions, linearized in the vicinity of the Poiseuille flow, are constructed, which
increase approximately 50 times in the initial time interval. In a similar
way, solutions of one flutter model that grow locally by 80 times were con-
structed.

The study was carried out within the framework of the state contract of the

Sobolev Institute of Mathematics (project no. FWNF-2022-0008).
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A modification of the quadratic interpolation method for finding the root
of a continuous function is proposed. Two quadratic interpolation polyno-
mials are simultaneously constructed. It is shown that if the third derivative
of the original function does not change sign on the considered interval of
localization of the required root, then the root lies between the roots of
the quadratic functions. This allows to significantly narrow the localization
interval and reduce the number of steps to calculate the root with a given
accuracy. The proposed modification of the quadratic interpolation method
is used in the problem of calculating isolines when modeling the hill diagram
of hydraulic turbines.

The work was carried out within the framework of the state task for Sobolev

Institute of Mathematics of the Siberian Branch of the Russian Academy of Sci-

ences, project no. FWNF-2022-0015.
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In the paper we consider the Cauchy problem for one system unsolvable
with respect to the highest time derivative I − αD2

x 0 a1
0 I − αD2

x −a2
ca1 −ca2 I − αD2

x

D2
t

 u
v
θ



+β

 D4
x 0 0
0 D4

x 0
0 0 D4

x

 u
v
θ

 = F (t, x),

(t, x) ∈ R2
+ = {t > 0, x ∈ R}, u

v
θ

∣∣∣
t=0

= Φ(x), Dt

 u
v
θ

∣∣∣
t=0

= Ψ(x),

(1)

where α, β > 0, 0 < c(a21 + a22) < 1. This system describes transverse
flexural-torsional vibrations of an elastic rod [1].

A classification of equations unsolvable with respect to the highest order
derivative was introduced in [2]. In particular, a class of pseudohyperbolic
equations was introduced and the Cauchy problem for them was studied.
Further studies of the solvability of the Cauchy problem for pseudohyper-
bolic equations were carried out in [3–5].

The system under consideration belongs to the class of pseudohyperbolic
systems. There is no general theory of solvability of the Cauchy problem for
this class of systems . There are only particular results for certain systems.
The following theorem is proven.

Theorem. Let e−γtF (t, x) ∈W 0,1
2 (R2

+), γ > 0, Φ(x) ∈W 4
2 (R), Ψ(x) ∈

W 3
2 (R). Then the Cauchy problem (1) has a unique solution

U(t, x) = (u(t, x), v(t, x), θ(t, x))T
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such that e−γtU(t, x) ∈ W 2,4
2 (R2

+), e
−γtD2

tD
2
xU ∈ L2(R

2
+), and the follow-

ing inequality holds:

∥e−γtU(t, x),W 2,4
2 (R2

+)∥+ ∥e−γtD2
tD

2
xU(t, x), L2(R

2
+)∥

≤ c(γ)

(
∥Φ(x),W 4

2 (R)∥+ ∥Ψ(x),W 3
2 (R)∥+ ∥e−γtF (t, x),W 0,1

2 (R2
+)∥
)
,

where c(γ) is a constant depending on the system coefficients and γ.
The authors express their gratitude to Prof. G.V. Demidenko for statement

of the problem and his attention to the work.

The study was carried out within the framework of the state contract of the

Sobolev Institute of Mathematics (project no. FWNF-2022-0008).
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PROBLEM FOR SECOND ORDER LINEAR
FUNCTIONAL DIFFERENTIAL EQUATIONS

WITH MIXED RESTRICTIONS ON FUNCTIONAL
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We consider linear second order functional differential equations without
the argument delay condition. Such non-Volterra or delayed and advanced
equations are interesting from a theoretical point of view, but more and
more mathematical models using such equations are appearing. The initial
problem (or Cauchy problem) for such equations is generally not uniquely
solvable under natural conditions. Therefore, the conditions for the unique
solvability of the Cauchy problem are important and interesting. In the
simplest case of an equation with concentrated deviation, our object looks
like this:

ẍ(t) = q(t)x(h(t)) + f(t), t ∈ [0, 1], (1)

where q, f : [0, 1] → R are integrable functions, h : [0, 1] → R is a measur-
able deviation of the argument.

Let us consider the most general case of functional differential equations,
which can be conveniently written in the operator form:

ẍ(t) = (T+x)(t)− (T−x)(t) + f(t), t ∈ [0, 1].

Here T+ and T− are linear positive operators acting from the space of real
continuous functions into the space of real integrable functions (positive
operators map non-negative functions into non-negative ones).

We find conditions for the unique solvability of the Cauchy problem{
ẍ(t) = (T+x)(t)− (T−x)(t) + f(t), t ∈ [0, 1],
x(0) = c0, ẋ(0) = c1,

(2)

for all positive operators T+ and T− satisfying the equalities

(T+1 )(t) = p+(t), (T−1 )(t) = p−(t), t ∈ [0, 1],
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where p+ and p− are two given non-negative integrable functions, 1 is the
unit function, 1(t) = 1 for all t ∈ [0, 1], c0, c1 ∈ R, f is integrable. By
imposing various restrictions on the functions p+ and p−, we can obtain
various conditions for the solvability of problem (2).

All known solvability conditions of this kind for many boundary value
problems were obtained under the same types of restrictions on the operators
T+, T−, that is only under pointwise restrictions or only under integral
ones. We can obtain solvability conditions under mixed restrictions, when
pointwise restrictions are imposed on the action of one of the operators T+,
T−, and integral restrictions are imposed on the other operator.

Let us present several obtained statements.
Theorem 1. Let constants P+ ≥ 0, P− ≥ 0 be given. Cauchy problem

(2) is uniquely solvable for all linear positive operators T+, T− such that

(T−1)(t) ≤ P−, t ∈ [0, 1],

∫ 1

0

(1− s)(T+1)(s) ds ≤ P+,

if and only if
P+ < 1, P− < 8(1 +

√
1− P+).

Theorem 2. Let α ≥ −1. Let constants P+ ≥ 0, P− ≥ 0 be given.
Cauchy problem (2) is uniquely solvable for all linear positive operators T+,
T− such that∫ 1

0

(1 + αs)(T−1)(s) ds ≤ P−,

∫ 1

0

(1− s)(T+1)(s) ds ≤ P+,

if and only if

P+ < 1, P− −P+ + 1 ≤
(
1 +

√
1 + α+

√
1−P+

)2
.

Note that the sign of the coefficient q in equation (1) is not required to be
preserved, and no conditions are imposed on the deviation of the argument.
The resulting solvability criteria are unimprovable in the sense that if they
are not satisfied, then there are equations with allowed parameters for which
the Cauchy problem is not uniquely solvable. We find solvability conditions
that cannot be obtained by the contraction mapping method.

The author was supported by the Ministry of Science and Higher Education

of the Russian Federation (the state task no. FSNM-2023-0005).
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We study the solvability of nonlocal problems, i.e., problems with inte-
gral conditions for linear ordinary differential equations of the third order

y′′′ + c(t)y = f(t).

Previously, when studying the solvability of such nonlocal problems, it was
used either an approach based on the transition to problems with “semi-
integral” conditions (by applying the corresponding integral operator to the
equation), or an approach based on the representation of solutions using ba-
sic functions of equation y′′′+c(t)y = 0. Our work assumes a new approach,
which differs from the approaches of predecessors. We give new conditions
for the solvability of the studied nonlocal problems.
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STABILITY OF TRANSONIC SHOCKS
PAST 3-D WEDGES
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Stability of transonic shocks is a difficult subject with a long history
dating back to Prandtl, who conjectured in 1936 that out of two types of
shocksstrong and weak shocks, the weak ones are stable. I will talk about the
stability of three dimensional transonic shocks governed by the 3-D potential
flow equation. It is showed that for a piecewise constant weak transonic
flow, if the incoming flow and the wedge are slightly perturbed, there exist
a unique weak transonic shock and downstream subsonic solution, which is
also a small perturbation from the background solution. The connection
between the shock condition and the elliptic estimates will be explained.
I will also introduce a recent result about the stability of strong transonic
shocks over 3-D wedges. We show that the strong shocks near normal shock
regime are stable.
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A.D. Myshkis was the first to systematically investigate conditions for
solutions to differential equations with aftereffect to have certain asymp-
totic properties. In particular, it was he who first proved a number of
statements related to the oscillation constant 1/e and found the stability
constant 3/2 [1]. Extensions and sharpenings of Myshkis’s results constitute
the important directions in the theory of delay differential equations, which
are still being actively developed. We consider some achievements in these
directions.

The most fundamental results by Myshkis were first obtained for the
linear nonautonomous equation of the first order

ẋ(t) + a(t)x(h(t)) = 0, t ≥ 0, (1)

where h(t) ≤ t, and then extended to some more general equations. We
consider results related to the case a(t) ≥ 0, which is called by Myshkis an
equation of stable type. The most perfect generalizations of these results for
equation (1) are the following.

Suppose that a(t) ≥ 0 for all t ≥ 0, and h(t) → +∞ as t→ +∞.

Theorem 1 [2]. If lim
t→+∞

∫ t

h(t)
a(s) ds > 1/e, then all solutions to equa-

tion (1) oscillate. If lim
t→+∞

∫ t

h(t)
a(s) ds ≤ 1/e, then equation (1) has a

nonoscillatory solution.
Theorem 2 [3, 4]. If sup

t≥T

∫ t

h(t)
a(s) ds ≤ 3/2 for some T > 0, then

all solutions to equation (1) are uniformly stable. If
∫∞
0
a(s) ds = ∞ and

lim
t→+∞

∫ t

h(t)
a(s) ds < 3/2, then all solutions to equation (1) are asymptoti-

cally stable.
We consider generalizations of Theorems 1 and 2 for equations of more

general forms than (1). The most interesting cases for us are the equation
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with several delays

ẋ(t) +
n∑

k=1

ak(t)x(hk(t)) = 0, t ≥ 0, (2)

and the first-order linear equation of the general form

ẋ(t) +

∫ t

h(t)

x(s) dsr(t, s) = 0, t ≥ 0. (3)

We consider equations of stable type which means that ak(t) ≥ 0 in (2),
r(t, ·) is increasing in (3), and h(t) → +∞ as t → +∞ in both (2) and
(3). The first question on asymptotic properties of solutions to equation (2)
that we consider is to find effective oscillation and stability tests (which are
conditions expressed in terms of parameters of the equation under consid-
eration) that equally take into account all terms of the sum in (2). The
next question is generalization of such tests to the case of equations with
distributed delay and, in the general case, to equation (3).

The author was supported by the Ministry of Science and Higher Education

of the Russian Federation (project no. FSNM-2023-0005).
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History. The notation of discrete analytic function on the Gaussian
lattice G = Z+iZ was given by R. F. Isaacs [1]. He classified these functions
into functions of first and second kind and investigated those of first kind.
Further J. Ferrand [2] and R. J. Duffin [3] created the theory of discrete
analytic functions of second kind (from now on: discrete analytic functions).
Important results which are connected with a behaviour of discrete analytic
and harmonic functions at infinity was obtained by S. L. Sobolev [4]. New
combinatorial and analytical ideas to the theory were input by D. Zeilberger
[5]. They were generalized by A.D. Mednykh [6]. An advance of nonlinear
theory of discrete analytic functions based on usage of circle patterns began
by W. Thurston [7] and his students [8, 9]. In that way an approximation
with rapid convergence was obtained in the theory of conformal maps of
Riemann surfaces.

Definition. From now on, G = {x + i y : x, y ∈ Z} is the Gaussian
integer lattice and G+ = {x + i y ∈ G : x ≥ 0, y ≥ 0} is a part of Gaus-
sian plane contained in the first quadrant. A complex function f defined
on some subset E ⊂ G is called discrete analytic on E if for any square
{z, z + 1, z + 1 + i, z + i} ⊂ E there holds:

f(z + 1 + i)− f(z)

i+ 1
=
f(z + i)− f(z + 1)

i− 1

or equivalently

∂̄f(z) = f(z) + if(z + 1) + i2f(z + 1 + i) + i3f(z + i) = 0.

A discrete analytic function on all G+ is called entire discrete. Let us denote
the set of all discrete analytic functions on E and on G+ by D(E) and D(G+)
correspondingly.

Theorem 1. Every discrete analytic function f ∈ D(G+) has a Taylor
expansion in terms of πk(z) :

f(z) =
∞∑
0

akπk(z), z ∈ G+.
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Theorem 2. Above mentioned expansion is not unique. More precisely,

f(z) =

∞∑
0

akπk(z) ≡ 0, z ∈ G+ ⇔ F (s) = 0, s ∈ Z.

Theorem 3. A homomorphism Θ : A(UR) → D(QR) is “onto” and
Θ(F ) ≡ 0 ⇔ F (s) = 0, s ∈ Z, |s| < R. In this case

KerΘ = ⟨FN (ξ)⟩ = FN · (UR)

is a principal ideal inA(UR) generated by function FN (ξ) = ξ
∏N

k=1(ξ
2−k2),

where N = [R], if R is non-integer and R− 1 otherwise.
Theorem 4. Let f ∈ D(G+). Then there exists a function F (ξ) =∑∞

|k|=0 ak
ξk

(1+i)|k| ∈ A(Cn) such that f(z) =
∑∞

|k|=0 akπk(z) and this expan-

sion converge absolutely for all z ∈ G+. In addition, ΘF = 0 ⇔ F (s) = 0
for all s ∈ Zn.
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We consider the following systems of nonlinear differential equations

dy

dt
= A(t)y + f(t, y), −∞ < t <∞, (1)

where the entries of the matrix A(t) of dimension m×m are continuous T -
periodic functions, the continuous vector-function f(t, y) satisfies the local
Lipschitz condition in y and the conditions

f(t+ T, y) ≡ f(t, y), ∥f(t, y)∥ ≤ q(1 + ∥y∥)ω

hold, where q > 0 and ω ≥ 0 are constants.
We assume that the linear system

dy

dt
= A(t)y, −∞ < t <∞,

is exponentially dichotomous.
Our aim is to study conditions of existence of T -periodic solutions to (1)

and stability of the solutions under small perturbations of coefficients and
nonlinear terms.

The work is continue the research [1, 2].
The study was carried out within the framework of the state contract of the

Sobolev Institute of Mathematics (project no. FWNF-2022-0008).
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We study correctness of a boundary value problem in a cylindrical do-
main QT = {(t, x) ∈ Rn+1 : t ∈ (0, T ), x ∈ G ⊂ Rn} for the equation of
the fourth order with variable coefficients

utt −
n∑

i=1

Dxi (αi(x)Dxiutt)

+

n∑
i,j=1

D2
xixj

(
aij(x)D

2
xixj

u
)
−

n∑
i=1

Dxi(bi(x)Dxiu) = f(t, x), (1)

where the coefficients of the equation are real-valued and sufficiently smooth
functions, moreover

αi(x) ≥ αi > 0, aij(x) ≡ aji(x) ≥ aij > 0, bi(x) ≥ 0.

Equation (1) is an equation not solvable with respect to the highest-order
derivative. Such equations are usually called Sobolev type equations since
S. L. Sobolev’s works were the beginning of the systematic study of such
equations [1]. Equation (1) describes the behavior of torsional and longitu-
dinal vibrations of elastic rods [2, 3]. This equation belongs to the class of
pseudohyperbolic equations introduced in the monograph [4].

We consider the boundary value problem for (1) with the following con-
ditions

u
∣∣
S
= 0,

∂u

∂ν

∣∣∣∣
S

= 0, u
∣∣
t=0

= 0, Dtu
∣∣
t=0

= 0, (2)

where
S =

{
(t, x′) ∈ QT : t ∈

[
0, T

]
, x ∈ ∂G

}
.
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Definition. A function u(t, x) ∈W 1,2
2 (QT ) such that

utxi ∈ L2(QT ), i = 1, . . . , n, u
∣∣
t=0

= 0, u
∣∣
S
= 0,

∂u

∂ν

∣∣∣∣
S

= 0,

is called a generalized solution to the boundary value problem (1), (2) if the
equality holds∫

QT

[
− utvt +

n∑
i=1

[
− αi(x)D

2
txi
uD2

txi
v + bi(x)DxiuDxiv

]

+

n∑
i,j=1

ai,j(x)D
2
xixj

uD2
xixj

v

]
dxdt =

∫
QT

f(t, x)v(t, x)dxdt,

for every v(t, x) ∈W 1,2
2 (QT ) such that vtxi ∈ L2(QT ), i = 1, . . . , n,

v
∣∣
t=T

= 0, v
∣∣
S
= 0,

∂v

∂ν

∣∣∣∣
S

= 0.

Theorem. Let f(t, x) ∈ L2(QT ), then the boundary value problem
(1), (2) has a unique generalized solution u(t, x) ∈W 1,2

2 (QT ); moreover,

∥u(t, x),W 1,2
2 (QT )∥ ≤ c∥f(t, x), L2(QT )∥,

where constant c > 0 does not depend on f(t, x).
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We consider the stability of stationary solutions to quasilinear equation
with parameters

y′′ + αµy′ + (βµ2 + µφ(t))f(y) = 0,

where α, β > 0, φ(t) is a continuous T -periodic function with zero mean
value over the period, f(y) is a smooth function, and µ > 0 is a small
parameter.

We establish conditions for perturbations of the coefficients of the equa-
tion under which the zero solution is asymptotically stable. Estimates for
attraction sets of the zero solution and estimates of the stabilization rate
of solutions at infinity are obtained. Using these results, theorems on the
robust stability of stationary solutions are proven.
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In this paper we consider the Cauchy problem for the system of nonlinear
ordinary differential equations

dz1
dt = g(t, zn)− n−1

τ1
z1

1+ρ1(n−1)−γ1
+ n−1

τ2
z2

1+ρ2(n−1)−γ2
, t > 0,

dzj
dt = n−1

τ1

zj−1

1+ρj−1(n−1)−γj−1
−
(

n−1
τ1

+ n−1
τ2

)
zj

1+ρj(n−1)−γj

+ n−1
τ2

zj+1

1+ρj+1(n−1)−γj+1
, j = 2, . . . , n− 2,

dzn−1

dt = n−1
τ1

zn−2

1+ρn−2(n−1)−γn−2
−
(

n−1
τ1

+ n−1
τ2

)
zn−1

1+ρn−1(n−1)−γn−1
,

dzn
dt = −θzn + n−1

τ1

zn−1

1+ρn−1(n−1)−γn−1
,

z|t=0 = z0,

(1)

where θ > 0, 0 ≤ ρj < ρ, γj > γ > 1, τ2 > τ1 > 0. Here g(t, z) ∈ C(R2

+)
is a bounded function and satisfies Lipschitz condition with respect to the
second argument. Such systems appear in multistage synthesis models (see,
for example, [1]), where zn(t) describes consentration of the final synthesis
product. Since number of stages n can be very large, then a problem of
“large dimension” occurs when finding zn(t).

In this paper we study properties of solutions to (1) for n ≫ 1 and
τ2 ≫ 1. Using methods proposed by G.V. Demidenko (see, for instance,
[2, 3] we prove closeness of zn(t) for n ≫ 1 and the solution y(t) to the
following delay differential equation

dy

dt
= −θy + g(t− τ, y(t− τ)),

where τ = τ1τ2
τ2−τ1

. We prove that the components of the solution to (1) can
be approximated by the components of the solution to the following Cauchy
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problem for τ2 ≫ 1

dx1

dt = g(t, xn)− n−1
τ1(1+ρ1(n−1)−γ1 )

x1, t > 0,

dxj

dt = n−1
τ1(1+ρj−1(n−1)−γj−1 )

xj−1 − n−1
τ1(1+ρj(n−1)−γj )

xj , j = 2, . . . , n− 1,

dxn

dt = −θxn + n−1
τ1(1+ρn−1(n−1)−γn−1 )

xn−1,

x|t=0 = z0.

Estimates characterizing convergence rates as n → ∞ and τ2 → ∞ were
obtained in [4].
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This paper deals with the problem of reduced-order observer-based con-
troller design for a class of nonlinear time-delay systems. The systems
described as {

ẋ = Ax+Aτxτ +Bu+ ϕ(x, xτ ),
y = Cx,

(1)

where x ∈ Rn is the state vector, y ∈ Rp is the output vector, u ∈ Rm

is the control input vector, A,Aτ ∈ Rn×n and C ∈ Rp×n are the constant
matrices of appropriate dimensions, xτ = x(t − τ) and τ is the positive
constant time-delay; ϕ(x, xτ ) is a nonlinear function with respect to x, xτ .

We employ the partitions of the matrices as follows:

A =

(
A11 A12

A21 A22

)
, Aτ =

(
Aτ11 Aτ12

Aτ21 Aτ22

)
, B =

(
B1

B2

)
,

where A11, Aτ11 ∈ Rp×p, A12, Aτ12 ∈ R p×(n−p), A21, Aτ21 ∈ R(n−p)×p,
A22, Aτ22 ∈ R(n−p)×(n−p), B1 ∈ R p×m and B2 ∈ R (n−p)×m.

The sufficient conditions for the existence of the reduced-order observer
of nonlinear time-delay systems (1) is proposed.

Theorem. Consider nonlinear time-delay system (1) with quasi-one-
sided Lipschitz condition. If there exists some matrix Q > 0, gain matrices
L and Lτ can be chosen such that the following matrix inequality(

(A− LC)TP + P (A− LC) +Q+ 2M P (Aτ − LτC)
∗ −Q+ 2N

)
< 0
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holds, where the positive-definite matrix P and the symmetric matrices
M , N satisfy the quasi-one-sided Lipschitz condition, then there exists a
reduced-order observer for nonlinear system (1) given by

˙̂z2 = (A22 + FA12)ẑ2 + (Aτ22 + FAτ12)ẑτ2 + (FA11 − FA12F

+A21 −A22F )y + (FAτ11 − FAτ12F +Aτ21 −Aτ22F )yτ

+ (FB1 +B2)u+ (F, In−p)ϕ

((
y

ẑ2 − Fy

)
,

(
yτ

ẑτ2 − Fyτ

))
,

ẑ1 = x̂1 = y,
x̂2 = ẑ2 − Fy,

(2)
where F = P−1

3 PT
2 ∈ R(n−p)×p.

Subsequently, a state feedback controller is designed, the sufficient con-
ditions that the zero solution of the closed-loop system is asymptotically
stable is proposed. Then, a reduced-order observer-based controller is pro-
posed for stabilization of system (1).

Combining the controller

u = −Kx̂−Kτ x̂τ

with reduced-order observer (2), by nonsingular state transformation and
constructing series Lyapunov–Krasovskii functional

V (x, e2) = b xTP0x+b

∫ t

t−τ

xT (s)Q0x(s)ds+e
T
2 P3e2+

∫ t

t−τ

eT2 (s)Q3e2(s)ds,

it is shown that the separation principle holds for stabilization of the systems
based on the reduced-order observer-based controller.

The authors were supported by the National Natural Science Foundation of

China (Grant No. 12271340 and No. 11971303), Natural Science Foundation of

Shanghai (21ZR1426400).
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Specialists in preventive and clinical medicine are often faced with the
need to make decisions on the management of individual components of the
dynamic of health-related quality of life (HRQoL). Judgments about the
quality of any object have the property of variability depending on time,
therefore, in system dynamic models, the overall picture of HRQoL should
be considered over time. The analysis of the dynamic characteristics form-
ing the integral assessment of HRQoL is not sufficiently developed according
to modern available domestic and foreign literature. So, modeling the dy-
namics of HRQoL is relevant.

For modeling, we took a structural model in the form of a graph-tree
with three levels of hierarchy, built on the basis of information from the
nonspecific SF-36 questionnaire, approved by the WHO as a tool for as-
sessing HRQoL [1]. Elements of HRQoL as a system are distributed in the
model into levels, at each of which square matrices of paired comparisons
are compiled, reflecting qualitative judgments of experts about the dynam-
ics of HRQoL, which are then converted into quantitative ones using of
hierarchies analysis method (HAM) by T. Saaty [2]. Classes of functions
describing the dynamics of HRQoL criteria were identified. The priority
(weight) vectors w(t) are eigenvectors of these matrices and found from
solving linear equation of the form

A(t)w(t) = λmax(t)w(t)

for each fixed t from some segment [t0, t0 + T ].
The problems of HRQoL research are related to the multidimensionality

of scales and their heterogeneity. The first problem is solved by using the
method of nested linear convolution, which has the form

J = w21

4∑
i=1

w3ix3i + w22

8∑
i=5

w3ix3i, (1)
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where (x31, . . . , x38) is a vector of the lower level of the hierarchy, repre-
senting the survey results (indicators) in points from 0 to 100 for scales of
the HROoL. Priority vectors of the second and third levels of the hierar-
chy are constructed using HAM and represent the weights of these scales in
fractions of 1.

Let us denote by w = (w1, . . . , w8) the vector of linear convolution co-
efficients (1), and by x = (x1, . . . , x8) the vector of indicators of HRQoL
scales of the third (lower) level of the hierarchy. Then integral indicator of
HROoL has a form I(w, x) = J(w, x)/100 and its maximum equal to 1 is
achieved at x3i = 100 for all i = 1, . . . , 8.

In a real situation research x(t) cannot be carried out continuously.
Therefore, it is necessary to select a time period and discretize the task
of studying HRQoL. In this case, it may be useful to idealize the model in
the form of ordinary differential equation

ẋ = f(t, w(t), x, u(t, x)) (2)

and to select the difference equations. We consider the difference equation
of Euler method

x(tk + h) = x(tk) + hf(tk, w(tk), x(tk), u(tk, x(tk)) (3)

in vector form, where h = T/N , k = 0, . . . , N − 1.
The vector-function f(t, w, x, u) = (f1, . . . , f8) is to be determined based

on the problems of the research. In particular, this may be the problem
of optimal management resources, the task of the fastest growth of the
integral indicator of HRQoL, the task of finding the equilibrium position
for equations (2) and (3) and its stabilization.
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Let Z be Banach space, Cl(Z) be a set of linear closed operators, densely
defined in Z, Sθ,a := {µ ∈ C : | arg(µ − a)| < θ, µ ̸= a} for θ ∈ [π/2, π],
a ∈ R. Define a class AW (θ0, a0) [1] of all operators A ∈ Cl(Z), such that:

(i) there exist θ0 ∈ (π/2, π], a0 ≥ 0, such that W (λ) ∈ ρ(A) for every
λ ∈ Sθ0,a0 ;

(ii) for every θ ∈ (π/2, θ0), a > a0, there exists K(θ, a) > 0, such that
for all λ ∈ Sθ,a

∥(W (λ)I −A)−1∥L(Z) ≤
|λ|K(θ, a)

|W (λ)||λ− a|
.

Let b < c, m− 1 < c ≤ m ∈ N, bl < cl, ml − 1 < cl ≤ ml ∈ Z, c1 ≤ c2 ≤
· · · ≤ cn < c, µ ∈ BV ((b, c];C), µl ∈ BV ((bl, cl];C), l = 1, 2, . . . , n, T > t0.
A solution on a segment [t0, T ] of the Cauchy problem

Dkz(t0) = zk, k = 0, 1, . . . ,m− 1, (1)

for the equation

c∫
b

Dαz(t)dµ(α) = Az(t) +B

t, c1∫
b1

Dαz(t)dµ1(α), . . . ,

cn∫
bn

Dαz(t)dµn(α)

 ,

(2)

is a function z ∈ Cm−1([t0, T ];Z)∩C((t0, T ];DA), such that
c∫
b

Dαz(t)dµ(α) ∈

C((t0, T ];Z),
cl∫
bl

Dαz(t)dµl(α) ∈ C([t0, T ];Z), l = 1, 2, . . . , n, and equalities

(1) and (2) for t ∈ (t0, T ] are fulfilled.
Theorem [2]. Let m − 1 < c ≤ m ∈ N, b < c, µ ∈ BV ((b, c];C), c be

a variation point of the measure dµ(α), n ∈ N, c1 ≤ c2 ≤ · · · ≤ cn < c,
bl < cl, µl ∈ BV ((bl, cl];C), cl be a variation point of the measure dµl(α),
l = 1, 2, . . . , n, A ∈ AW (θ0, a0) for some θ0 ∈ (π/2, π), a0 ≥ 0, zk ∈ DA, k =
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0, 1, . . . ,m− 1, a mapping B ∈ C([t0, T ]×Zn;Z) be Lipschitz continuous.
Then, problem (1), (2) have a unique solution on the segment [t0, T ].

Consider a bounded region Ω ⊂ Rd with a smooth boundary ∂Ω, β, γ, ν ∈
R, c ∈ (1, 2), b < c, α1 < α2 < · · · < αn ≤ c, ωk ∈ R \ {0}, k = 1, 2, . . . , n,
ω ∈ C([b, c];R); if αn < c, then ω(c) ̸= 0 in a some left vicinity of c; βl < c,
bl < cl < c, µl ∈ BV ((bl, cl];R), l = 1, 2. Consider the initial-boundary
value problem

u(s, 0) = u0(s), v(s, 0) = v0(s), s ∈ Ω,

∂u

∂t
(s, 0) = u1(s),

∂v

∂t
(s, 0) = v1(s), s ∈ Ω,

u(s, t) = v(s, t) = 0, (s, t) ∈ ∂Ω× (0, T ],

for the nonlinear system of equations in Ω× (0, T ]

n∑
k=1

ωkD
αk
t u(s, t) +

c∫
b

ω(α)Dα
t u(s, t)dα = ∆u(s, t)−∆v(s, t)

+F1

s,Dβ1u(s, t),

c1∫
b1

Dαv(s, t)dµ1(α)

 ,

n∑
k=1

ωkD
αk
t v(s, t) +

c∫
b

ω(α)Dα
t v(s, t)dα = ν∆v(s, t) + βu(s, t) + γv(s, t)

+F2

s,Dβ2v(s, t),

c2∫
b2

Dαu(s, t)dµ2(α)

 .
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We are developing methods for studying the asymptotic behavior of non-
autonomous systems presented in the form of differential inclusions, discon-
tinuous systems and systems with delay. The received results carry the
form of generalizations of the LaSalle’s principle of invariance. Within the
framework of the Lyapunov’s direct method, it is assumed that the deriva-
tive of the Lyapunov function is non-positive. For autonomous systems,
the following conclusion can be drawn from this: ω-limit sets of solutions
belong to the largest invariant subset of the set of zeros of the derivative of
the Lyapunov’s function of these systems.

Difficulties in studying non-autonomous systems are associated with the
lack of invariance properties of ω-limit sets for solutions of such systems, as
well as with the description of the set of zeros of the derivative of Lyapunov
functions. Attempts to overcome these difficulties led to the emergence of
the concept of limit differential equations. The method of limit equations
in non-autonomous systems goes back to the works of G.R. Sell [1] and
Z. Arshtein [2] on the topological dynamics of non-autonomous differential
equations.

Extending the method of limit equations to wider classes of systems
raises a fundamental question about the structure of limit equations. We
solve this problem by passing to limit differential inclusions.

Let Rn be a n-dimensional vector space, conv Rn be the collection of all
non-empty compact convex subsets of Rn. We consider a non-autonomous
differential inclusion

ẋ ∈ F (t, x), x(t0) = x0, (1)

where F : R1×Rn → conv Rn is such that for every fixed x the multivalued
mapping t → F (t, x) has a measurable selector. In particular, this takes
place in the theory of discontinuous systems when determining a solution in
the sense of A. F. Filippov. Here, to construct limit maps it is not possible
to use any theorems and facts of mathematical and multivalued analysis on
the convergence of functional sequences.
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For further we will also assume that multivalued mapping x → F (t, x)
be upper semicontinuous and limited on every set R1 ×K, where K ⊂ Rn

is a compact set.
Let us formulate one of the theorems based on the study of the limit

differential inclusion

ẋ ∈ F ∗(x)
def
= ∩t≥0coF (t, x), (2)

where co is the sign of the convex closed hull of the set.
Definition. A set D ⊂ Rn is semi-invariant, if for any point y ∈ D

there exists a solution y(t) to inclusion (2) such that y(0) = y and y(t) ∈ D
for all t ≥ 0.

Theorem. Let w(t, x) be a bounded function of Caratheodory type and
the inequality

V̇ +(t, x)
def
= sup

y∈F (t,x)

(⟨∇xV, y⟩+ Vt) ≤ w(t, x)

holds, where ∇xV is the gradient of V (t, x) with respect to the variable x,
Vt is the partial derivative with respect to t and ⟨·, ·⟩ is scalar product. Then
the ω-limit set of any bounded solution x(t) of the inclusion (1) belongs to
the largest semi-invariant subset of the set

E(α = 0)
def
= {x ∈ Rn : α(x) = 0},

where α(x) is lower limit of function t→ w(t, x) under condition t→ +∞.
Based on this Theorem, in article [3] it was studied the asymptotic

behavior of mechanical systems with dry friction at the Lagrange form.
The work was carried out within the framework of the state task of the Min-
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The work investigates integro-differential equations in Banach spaces
with operators, which are a composition of convolution and differentiation
operators. The conditions of the unique solvability of the Cauchy type prob-
lem for a degenerate integro-differential equation of the Riemann–Liouville
type are obtained. Examples of integro-differential operators, which are
various fractional derivatives, are considered.

Let X and Y be Banach spaces,M : DM → Y is a linear closed operator,
DM = X , L is a linear bounded operator, kerL ̸= {0}. If {µ ∈ C : |µ| >
a} ⊂ {µ ∈ C : (µL−M)−1 ∈ L(Y;X )}, then there are projections

P =
1

2πi

∫
|µ|=r

(µL−M)−1Ldµ, Q =
1

2πi

∫
|µ|=r

L(µL−M)−1dµ, r > a,

on X and Y, respectively. Put X 0 := kerP , X 1 := imP , Y0 := kerQ,
Y1 := imQ, Lk := L|Xk , Mk := M |Xk∩DM

, k = 0, 1. It is known [1],
that Lk,Mk : X k → Yk, k = 0, 1, there is M−1

0 ∈ L(Y0;X 0). Denote
G := M−1

0 L0; under the condition Gp ̸= 0, Gp+1 = 0 for some p ∈ N ∪ {0}
operatorM is called (L, p)-bounded. Define the integro-differential operator

(Dm,Kx)(t) := Dm
∫ t

0
K(t−s)x(s)ds, where Dm is a usual derivative of the

order m.
Theorem [2]. Let an operatorM be (L, p)-bounded, K ∈ C(R+;L(X )),

there exists the Laplace transform K̂, which be single-valued analytic opera-
tor-function in ΩR0 := {µ ∈ C : |µ| > R0, | argµ| < π} for some R0 >

0 and condition ∥K̂(λ)∥L(X ) > c|λ|χ−1 in ΩR0 for some χ, c > 0 holds.

Suppose that for all λ ∈ ΩR0 there exists K̂(λ)−1 ∈ L(X ), g ∈ C((0, T ];Y)∩
L1(0, T ;Y), for l = 0, 1, . . . , p

(Dm,KG)lM−1
0 (I −Q)g, Dm,K(Dm,KG)lM−1

0 (I −Q)g ∈ C((0, T ];X ),
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xk ∈ X 1, k = 0, 1, . . . ,m − 1. Then there exists a unique solution to
problem Dk,K(Px)(0) = xk, k = 0, 1, . . . ,m−1, LDm,Kx(t) =Mx(t)+g(t),
t ∈ (0, T ], it has the form

x(t) =

m−1∑
k=0

Uk(t)xk +

t∫
0

Um−1(t− s)L−1
1 Qg(s)ds

−
p∑

l=0

(Dm,KG)lM−1
0 (I −Q)g(t),

where for k = 0, 1, . . . ,m− 1

Uk(t) =
1

2πi

∫
∂ΩR

(λmK̂(λ)− L−1
1 M1)

−1λm−1−keλtdλ, t > 0.

Example 1. Take m−1 < α ≤ m ∈ N, Kα(s) :=
sα−1

Γ(α) I, then D
m,Km−α

is the operator of the fractional Riemann–Liouville differentiation of the
order α.

Example 2. Take a ∈ R, α > 0, β ∈ (0, 1), K(s) = s−βEα,1−β(as
α)I,

where Eα,δ(z) =
∞∑
k=0

zk

Γ(αk+δ) is the Mittag–Leffler function, then

Dm,Kx(t) = Dm

t∫
0

(t− s)−βEα,1−β(a(t− s)α)x(s)ds

is the fractional derivative of Prabhakar [3].
The work was funded by the grant of the President of the Russian Federation
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Following [1], we consider 10-D dynamical system as a model of one
pluripotency gene network functioning:

du1
dt

= F1(A, u3, v2)− k1u1;
du2
dt

= F2(A, u3, v2)− k2u2;

du3
dt

= µ3u4u6 − (k3 + α3)u3;
du4
dt

= α3u3 + µ4u5 − (k4 + µ3u6)u4;

du5
dt

= α5u1 − (k5 + µ4)u5;
du6
dt

= α3u3 + µ6u7 − (k6 + µ3u4)u6;

du7
dt

= α7u2 − (k7 + µ6)u7;
dv1
dt

= F3(u3, v2)− k8v1;

dv2
dt

= α9v3 − k9v2;
dv3
dt

= α10v1 − (α9 + k10)v3. (1)

Some feedbacks here are described by the functions

F1(A, u3, v2) =
a2 + a3A+ a4u

m
3 + q1v

s
2

1 + a7A+ a8um3 + q2vs2
;

F2(A, u3, v2) =
a11 + a12A+ a13u

n
3 + q3v

r
2

1 + a16A+ a17un3 + q4vr2
;

F3(u3, v2) :=
1 + b3u

ℓ
3

1 + b6uℓ3 + (1 + b8uℓ3)v
h
2

.

The non-negative variables uj , vk denote concentrations of the compo-
nents of the gene network, A is an external signal. The biological interpre-
tations are exposed in [1, 2]. In our studies, in contrast with [1, 2], we do
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not fix the values of the parameters in the system (1); we just impose here
some additional symmetry conditions which are satisfied in [1]:

F1(A, u3, v2) ≡ F2(A, u3, v2), α5 = α7, k1 = k2, k4 = k6, k5 = k7.
Under these assumptions, we find conditions of existence of several equi-

librium points of the system (1) and describe conditions of their stability.
These points correspond to different states of the stem cells, see [1, 2].

Numerical illustrating experiments with trajectories of the system (1) are
realized in a cloud web service: https://colab.research.google.com/drive/
1GicSvb e95dRe U451 r8F-1Fr97QLu7?usp=sharing
This client-server application was elaborated using approaches described
in [3].

The authors are indebted to N.A. Kolchanov and I. R. Akberdin for helpful

discussions. The work is supported by the Russian Science Foundation (project

no. 23-21-00019).
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To Sergey Konstatinovich Godunov on his memory

In the mid 1970s, at Novosibirsk State University, the S.K. Godunov
seminar on hyperbolic equations started its work. The report describes the
works of the participants on hyperbolic equations. The main interest was
concentrated around two problems. The first is the reduction of a high-
order Petrovskĭı hyperbolic equation to a first-order Friedrichs hyperbolic
symmetric system. The second problem is that if a boundary value problem
is posed for a hyperbolic equation, then it is required to reduce it to a
symmetric system so that the posed boundary condition be dissipative.
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In the electrostatic approximation, when the electric field of electrons
and ions is self-consistent, the plasma dynamics is described by the kinetic
Vlasov–Poisson equations [1]. In this case, such equations are used to study
the collisionless motion of electrons, which interact with each other through
the Coulomb repulsive forces, against the background of a homogeneous
distribution of ions in the whole physical continuum.

The aim of this research is to prove an absolute instability for the ex-
act stationary cylindrically symmetrical solutions to kinetic Vlasov–Poisson
equations by the direct Lyapunov method [2] with respect to the small cylin-
drically symmetrical perturbations. The results of this study are important
for solving the problem of controlled thermonuclear fusion.

To achieve such goal, the hydrodynamic substitution of independent
variables is performed so that kinetic Vlasov–Poisson equations are trans-
formed to an infinite system of cylindrically symmetrical equations similar
to the equations of isentropic flows of compressible fluid medium in the vor-
tex shallow water and the Boussinesq approximations [2]. The new defining
equations have the exact stationary solutions that are equivalent to the ex-
act stationary cylindrically symmetrical solutions to kinetic Vlasov–Poisson
equations. Then these defining equations are linearized near their exact
stationary solutions. The a priori exponential estimate from below is con-
structed for a subclass of small cylindrically symmetrical perturbations of
exact stationary solutions to new defining equations, which grow over time
and are described by the field of Lagrangian displacements [2]. Since the
estimate is obtained for any exact stationary solutions to new defining equa-
tions, it proves precisely the absolute linear instability of these solutions with
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regard to the small cylindrically symmetrical perturbations from the sub-
class mentioned above. Thus, the Newcomb–Gardner–Rosenbluth sufficient
condition [3] for linear stability of the exact stationary cylindrically sym-
metrical solutions to kinetic Vlasov–Poisson equations is conversed, and its
formal character is revealed. Also, the sufficient conditions for linear prac-
tical instability of the exact stationary solutions to new defining equations
are found, and their constructive nature is discovered. At last, the results
of this research are consistent with the well-known Earnshaw theorem [1, 3]
on instability in electrostatics and extend the scope of its applicability from
classical mechanics to statistical one.

As for the significance of these results, they can be used to study the
adequacy of mathematical models for plasma to the physical phenomena
which the models describe. Furthermore, the results obtained here can be
applied to the development and subsequent operation of devices designed
to perform the controlled thermonuclear fusion. In order for a plasma con-
finement device to operate reliably, it needs for us to ensure the practical
stability of its dynamic equilibrium states with respect to all acceptable
perturbations. In particular, these equilibrium states should be robust in a
practical sense for small cylindrically symmetrical perturbations. This can
be achieved by creation of numerical and physical models, which correspond
to the linearized initial-boundary value problem under investigation, with
control the sufficient conditions for linear practical instability at some ref-
erence time points. In constructing these models, the main focus should be
on ensuring that the sufficient conditions for linear practical instability are
not met at the expense of those or other known external influences on small
cylindrically symmetrical perturbations growing with time (for example, by
virtue of suitable setting of initial conditions). In consequence, the opera-
tion reliability of the device for plasma confinement in working mode will
be guaranteed.

The author Luo Jingyue was supported by the China Scholarship Council

(project no. 202210100045).
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The Vlasov–Poisson model of boundless collisionless gas of neutral par-
ticles in a self-consistent gravitational field continues to be one of the basic
models of modern astrophysics. This is due to simplicity, clarity, and ob-
vious effectiveness of the model in describing large-scale processes in the
Universe.

In this work, we consider the spatial motions of boundless collisionless
self-gravitating Vlasov–Poisson gas of neutral particles in a three-dimensio-
nal Cartesian coordinate system:

∂f

∂t
+ vi

∂f

∂xi
− ∂φ

∂xi

∂f

∂vi
= 0,

∂2φ

∂x2i
= 4π

∫
R3

f(x,v, t)dv − ng

 , (1)

i = 1, 2, 3; f = f(x,v, t) ≥ 0; f(x,v, 0) = f0(x,v).

Here, f is the distribution function of neutral particles (for reasons of con-
venience, their masses are assumed to be the same and equal to unity); t
is time; x = (x1, x2, x3) and v = (v1, v2, v3) are coordinates and veloci-
ties of neutral particles; φ(x, t) is the potential of a self-consistent grav-
itational field; dv ≡ dv1dv2dv3 is the differential volume element in the
velocity space; 4πng ≡ const > 0 is the gas particles density in some three-
dimensional static state of global thermodynamic equilibrium; f0(x,v) is
the initial data for function f . We suppose that the distribution function
f asymptotically approaches zero as |v| → ∞, and this function along with
the potential φ are periodic in argument x or asymptotically approach zero
as |x| → ∞ too. Summation is performed on repeating lower index i.
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It is assumed that the mixed problem (1) has the following exact sta-
tionary solutions:

f = f0(v) ≥ 0, φ = φ0 ≡ const;

∫
R3

f0(v)dv = ng. (2)

The aim of this work is to prove an absolute linear instability for the spatial
states (2) of dynamic equilibrium of boundless collisionless self-gravitating
Vlasov–Poisson gas with respect to small three-dimensional perturbations.

For that purpose, a transition from kinetic equations (1) to an infi-
nite system of relations similar to the equations of isentropic flow of a
compressible fluid medium in the “vortex shallow water” and Boussinesq
approximations was carried out. In the course of instability proof, the well-
known sufficient Newcomb–Gardner–Rosenbluth condition for stability of
dynamic equilibrium states (2) with respect to one incomplete unclosed
subclass of small spatial perturbations was conversed. Also, a linear ordi-
nary differential second-order inequality with constant coefficients for the
Lyapunov functional was obtained. An a priori exponential lower estimate
for the growth of small three-dimensional perturbations follows from this
inequality when the sufficient conditions for linear practical instability of
the considered dynamic equilibrium states are satisfied. Since the obtained
estimate was deduced without any additional restrictions on the equilibrium
states under study, then the absolute linear instability of spatial states (2)
of dynamic equilibrium of the Vlasov–Poisson gas with respect to small
three-dimensional perturbations was thereby proved.

The results of this work are fully consistent with the classical Earnshaw
instability theorem. Moreover, the area of applicability for the Earnshaw
theorem is expanded now from electrostatics to kinetics, namely, to the
boundless collisionless self-gravitating Vlasov–Poisson gas of neutral parti-
cles.

Constructiveness is inherent in the sufficient conditions for linear prac-
tical instability established here, which allows them to be used as a testing
or control mechanism for conducting physical experiments and performing
numerical calculations.

As a means of confirming the results obtained, a series of analytical
examples of the considered dynamic equilibrium states are constructed along
with small spatial perturbations superimposed on them that grow in time
as identified by the found estimate.
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Problem Description: Consider linear high-order delay systems

x(n)(t) +
n∑

l=1

[Alx
(n−l)(t) +

m∑
j=1

Dl,jx
(n−l)(t− τj)] = Bu(t), (1)

where Al, Dl,j ∈ Rd×d for l = 1, . . . , n, j = 1, . . . ,m, B ∈ Rd×p are con-
stants, delays τj > 0, state x(t) ∈ Rd, control u(t) ∈ Rp, and the indexes
on x denote derivatives with respect to the independent variable t.

Let a controller be

u(t) = −{
n∑

l=1

[Klx
(n−l)(t) +

m∑
j=1

Fl,jx
(n−l)(t− τj)]},

where feedback gain matrices Kl, Fl,j ∈ Rp×d. The closed-loop system

x(n)(t) +

n∑
l=1

[Ãlx
(n−l)(t) +

m∑
j=1

D̃l,jx
(n−l)(t− τj)] = 0, (2)

where Ãl = Al +BKl and D̃l,j = Dl,j +BFl,j . Our aim is to seek feedback
gain matrices Kl and Fl,j such that system (2) is asymptotically stable.

Main Results: For system (2), let y1(t) = x(t), y2(t) = x(1)(t) =
ẏ1(t), . . . , yn(t) = x(n−1)(t) = ẏn−1(t). System (2) can be written as the
first-order system [1]

Ẏ (t) = AY (t) +
m∑
j=1

DjY (t− τj),

where Y (t) = [y1(t), y2(t), . . . , yn(t)]
T ∈ Rnd, A and Dj ∈ Rnd×nd are

determined by Ãn−l and D̃n−l,j , respectively.
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Let K⃗ denote the compound matrix [K1,K2, . . . ,Kn, F1,1, . . . , Fn,m].

The fundamental matrix of system (2) is denoted by G[K⃗, t] ∈ Rnd×nd,
which satisfies

Ġ[K⃗, t] = AG[K⃗, t] +
m∑
j=1

DjG[K⃗, t− τj ]

with G[K⃗, t] = 0, t < 0 and G[K⃗, 0] = I.

Let G[K⃗, t] =


G1,1(t) G1,2(t) . . . G1,n(t)
G2,1(t) G2,2(t) . . . G2,n(t)

...
...

...
...

Gn,1(t) Gn,2(t) . . . Gn,n(t)

 , (3)

where Gi,j(t) ∈ Rd×d for i, j = 1, . . . , n.
We present the main results.
Theorem 1. System (2) is asymptotically stable if and only if

G1,j(t) → 0 as t→ ∞, where G1,j(t) is defined in (3) for j = 1, . . . , n.
Theorem 2. System (2) is asymptotically stable if and only if∫∞

0

∑n
j=1 ||G1,j(t)||F 2

dt <∞, where || · ||F stands for the Frobenius norm.
Theorem 3. If system (2) is asymptotically stable, then∫∞

0

∑n
j=1 ||G1,j(t)||F 2

dt = 1
2π

∫∞
−∞

∑n
j=1 ||Ĝ1,j(iω)||F

2
dω <∞,

where Ĝ1,j(iω) is the Fourier transform of G1,j(t), for j = 1, . . . , n.
Theorem 4. If system (2) is asymptotically stable, then the Fourier

transform of G1,j(t) are given Ĝ1,j(iω) = (P (iω))−1[(iω)n−jI +
∑n−j

l=1 Al(iω)
n−j−l]

for j = 1, . . . , n− 1

Ĝ1,j(iω) = (P (iω))−1 for j = n.

Using Theorems 3 and 4, we present an algorithm to design a stabilizing
controller of system (1) along the line of [2]. Numerical examples show that
the presented algorithm is efficient.
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Engineering systems such as traffic systems, drilling systems and electric
circuits, as well as phenomenon in biology and economics, can often be
described by models in terms of delay differential equations. For complex
engineering systems, such models might be of high order, i.e., described in
terms of a high number of state variables. Due to limited computational,
accuracy and storage capabilities, simulation of the full model is often not
feasible and necessitating simplification of it. To address the issues of model
complexity, this paper presents a numerical method for model reduction of
linear delay systems. Consider the following linear time-invariant system
with multiple delays with the transfer function G:

G : ẋ(t) = A0x(t) +
m∑

d=1

Adx(t− τd) +Bu(t), y(t) = Cx(t), (1)

where x(t) ∈ Rn. We assume that system (1) is asymptotically stable for
zero input. The problem we consider is to find a stable reduced-order system
that closely approximates the input-output behaviour of system (1). The
reduced system will also be a linear delay system of the form

Ĝ : ˙̂x(t) = Â0x̂(t) +
m∑

d=1

Âdx̂(t− τd) + B̂u(t), ŷ(t) = Ĉx̂(t), (2)

where x̂ ∈ Rr is the state vector of the reduced-order system, r ≪ n. Our
purpose is to determine the matrices Â0, . . . , Âm, B̂ and Ĉ such that the
reduced-order system (2) is asymptotically stable in absence of input and
the H2 norm ∥G− Ĝ∥H2 is as small as possible.

Let vec(A) represents the column vectorization of a matrix A. Let p⃗ =
[vec(Â0)

T , . . . , vec(Âm)T , vec(B̂)T , vec(Ĉ)T ]T be the decision variable that
contains all the parameters to be determined. Let Ge(p⃗, s) = G(s)−Ĝ(p⃗, s).
Consider u(t) = 0, the state transition matrix of system (2) is denoted by
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X(p⃗, t), which satisfies Ẋ(p⃗, t) = Â0X(p⃗, t) +
m∑

d=1

ÂdX(p⃗, t− τd), t > 0,

X(p⃗, t) = 0, t < 0 and X(p⃗, 0) = I.
(3)

Theorem. If there exists Â0, . . . , Âm, B̂ and Ĉ such that

J(p⃗) = lim
T→∞

∫ T

0

α∥X(p⃗, σ)∥2F dσ+ lim
ωb→∞

∫ ωb

−ωb

βTr
[
Ge(p⃗, jω)

∗
Ge(p⃗, jω)

]
dω

exists and is finite, where the weights α and β are positive constants. Then
the reduced-order system (2) is asymptotically stable and there exists a
bounded positive constant γ such that the H2 norm ∥Ge∥H2 = γ.

According to the Theorem, we formulate the following optimization
problem to solve p⃗:

min
p⃗
α

∫ T

0

∥X(p⃗, σ)∥2F dσ + β

∫ ωb

−ωb

Tr
[
Ge(p⃗, iω)

∗
Ge(p⃗, iω)

]
dω (4)

subject to the constraints, Eqs. (3),

where α > 0 and β > 0 are weight coefficients, T and ωb are sufficiently
large constants.

By applying numerical discretization methods for the objective func-
tion (4) and the constraints (3), the above optimization problem can be
reduced to a numerically solvable version. This is a nonlinear programming
with equality constraints and can be converted to an unconstraint opti-
mization problem. Various gradient-based algorithms, such as the BFGS
quasi-Newton method, can be used for solving this problem.

The authors were supported by the National Natural Science Foundation of
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We consider the following delay differential equation:

d

dt
y(t) = ay(t) + by(t− τ), t > 0,

y(t) = φ(t), t ∈ [−τ, 0],

y(0+) = φ(0),

(1)

where φ ∈ C([−τ, 0]), a, b, τ ∈ R are constants, τ > 0. The aim of this work
is to find such a and b that any solution y(t) to problem (1) tends to zero
as t → ∞, as well as to obtain an estimate of the rate of this convergence.
The following results are obtained.

Theorem. 1) In the required domain, all solutions converge to zero at
an exponential rate;

2) for b > max{0,−a}, there exist solutions y(t) to problem (1) infinitely
increasing with the growth of t at an exponential rate;

3) for |b| = −a ≥ 0, any solution y(t) is bounded;
4) for 0 ≤ |b| < −a, any solution y(t) decreases to zero, moreover

|y(t)| ≤ C

[
t

τ

]
e(−|a|+W (|b|e|a|))[ t

τ ],

where C > 0 is a constant that depends on a, b and φ, W (z) is the main
branch of the W -Lambert function.

For b < 0, a condition on a and b of the convergence to zero of solutions

to problem (1) was considered in [1]:
a

−b
< cos

(√
|b2 − a2|

)
.
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The report is devoted to constructing and studying a particular class of
solutions to second-order nonlinear parabolic equations. We consider the
following equation

Tt = (Φ1(T ))xx + (Φ2(T ))x +Φ3(T ), (1)

where t, x are independent variables: t is time, x is a spatial variable; T (t, x)
is an unknown function, and Φi, i = 1, 2, 3, are the specified functions.

The most known particular case is the porous medium equation [1],
which corresponds to the case where Φ1 is a power function and Φ2 =
Φ3 ≡ 0. If Φ1 and Φ3 are power functions and Φ2 ≡ 0, Eq. (1) becomes
the generalized porous medium equation [1]; it is also called “the nonlinear
heat equation with a source”.

If the functions Φ1(T ),Φ2(T ) are differentiable, then (1) can be rewritten
as

Tt = (Φ′
1(T )Tx)x +Φ′

2(T )Tx +Φ3(T ). (2)

In turn, if the function K(T ) = Φ′
1(T ) is sufficiently smooth and mono-

tonic, after the substitution u = K(T ), Eq. (2) can be reduced to

ut = uuxx + f(u)u2x + g(u)ux + h(u), (3)

where f(u) = uϕ′′(u)/ϕ′(u) + 1, g(u) = Φ′
2(ϕ(u)), h(u) = Φ3(ϕ(u))/ϕ

′(u),
K(ϕ(u)) = u, i.e., ϕ(u) is the inverse function to K(T ).

Consider the boundary condition:

u(t, x)|x=a(t) = 0. (4)

Problem (3), (4) includes only one boundary condition, which makes the
term multiplying the higher derivative vanish. Thus, we cannot apply
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the classical existence and uniqueness theorems in this case and propose
a new one.

Theorem. Let a(t), f(u), g(u) and h(u) be analytical functions of their
arguments. Let the following conditions also hold:

f(0) > 0, g(0) + a′(0) ̸= 0, h(0) = 0.

Then, problem (3), (4) has two analytical solutions at the point (t = 0, x =
a(0)): they are the trivial u ≡ 0 and nontrivial u > 0, where the latter can
be written as a characteristic series. There are no other solutions in the
class of analytical functions.

To prove the theorem we follow the technique by A.F. Sidorov [2]. The
solution is constructed in the form of a power series, the convergence of
which is proved by the majorant method.

Since the theorem do not allow us to investigate the properties of so-
lutions, we have considered ansatzes that reduce solution construction to
Cauchy problems for second-order ODEs with singularity.

Let us construct exact solutions to Eq. (3) using the Clarkson–Kruskal
direct method [3–5]; i.e., in the form

u = φ(t)v(z), z = z(x, t),

where φ(t), z(x, t) are sufficiently smooth functions.
The obtained form of such solutions will be presented.
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In the V.N.Khankhasaevs paper, which is bound up with the problem
of mathematical modeling of the process of switching off the electric arc in
the gas flow, various mathematical models bound up with the hyperbolic
equation of heat conductivity (obtained by generalization of the Fourier
hypothesis) were studied both analytically and numerically [1].

In course of investigations bound up with the transfer processes in the
case of high-intensity influence of the gas, the earlier hypotheses presuming
the proportionality of the flow density to the vector of the potential gradi-
ent, which are based on the known physics laws, lead to an infinite rate of
distribution of the perturbations, what contradicts to fundamental laws of
nature.

The approximation of a continuous medium, used in the classical laws,
means that in the integral conservation laws for this medium one can make
a transition to the limit when the volume tends to zero. This passage to
the limit allows us to obtain the energy conservation equation in differential
form. From a modern physical point of view, this procedure is incorrect,
since the medium always consists of molecules and has its own internal
discrete structure [2].

To continue the process of this investigation, let us modify the mathe-
matical model, while considering the hyperbolic-parabolic equation

k(x, t)utt + cv(x, t) · ρ(x, t)ut = (λ(u, x, t)ux)x + c(x, t)u+ f(x, t) (1)

in the rectangular domain G = [0, X] × [T1, T2], T1 < 0 , T2 > 0. Further-
more, ∀(x, t) ∈ G, k(x, t) = 0, t ≤ 0; k(x, t) > 0, t > 0. That is, when t ≤ 0
the equation (1) is parabolic, and when t > 0 it is hyperbolic.

Initial boundary value problem: it is necessary to obtain the solution of
equation (1) in the domain G such that

u(x, t)|t=T1 = u0(x); (2)
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t ∈ [T1, T2] : −λ(0, t, u)
∂u(0, t)

∂x
+ α1(tc1− u(0, t)) = 0; (3)

λ(X, t, u)
∂u(X, t)

∂x
+ α2(tc2− u(X, t)) = 0. (4)

The mathematical model (1)–(4) is solved using the method of difference
schemes in the Mathcad-15 software package. The conservative scheme and
the simple iteration method are used, the result practically coincides with
the experimental data [3–5].

The authors were supported by the Russian Science Foundation (project no. 23-

21-00269, https://rscf.ru/project/23-21-00269/).
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We consider the nonlinear system of delay difference equations

xn+1 = A(n)xn +B(n)xn−τ(n) + F (n, xn, . . . , xn−τ ), (1)

n = 0, 1, . . . ,

where A(n), B(n) are sequences of N -periodic m×m matrices, τ(n) ∈ N is
a delay function, 1 ≤ τ(n) ≤ τ <∞, F (n, u0, . . . , uτ ) is a continuous vector
function satisfying one of the conditions:

1) ∥F (n, u0, . . . , uτ )∥ ≤ q0∥u0∥+ · · ·+ qτ∥uτ∥, qi > 0,

2) ∥F (n, u0, u1, . . . , uτ )∥ ≤ q∥u0∥1+ω, q, ω > 0.

Using a special Lyapunov–Krasovskii functional, sufficient conditions for the
asymptotic stability of the zero solution to linear systems of the form (1)(
F (n, xn, . . . , xn−τ ) ≡ 0

)
were established in [1].

In this paper, for nonlinear systems of the form (1) with periodic coef-
ficients in linear terms, we obtain conditions for the asymptotic stability of
the zero solution, estimates for attraction sets and estimates characterizing
decay rates of solutions to (1) at infinity [2].
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The report discusses the concept of differential equations with ordinary
and invariant derivatives.

Definition 1. Differential equation with ordinary derivatives is an
equation with respect to a function of one variable and its ordinary and
invariant derivatives.

Definition 2. Differential equation with partial derivatives is an equa-
tion with respect to unknown function of several variables and its partial
derivatives.

Differential equations
Differential equations with ordinary Differential equations with partial
derivatives derivatives

• Elliptic PDE,
• Parabolic PDE,
• Hyperbolic PDE

• Ordinary differential equations

dx(t)

dt
= g(t, x(t))

• Integro-differential equations

ẋ(t) =

∫ t

a

K(t, s, x(s))ds = q(t), t ≥ a

• Delay differential equations

ẋ(t) = f(t, x(t), x(t− τ)), τ = const > 0

• Neutral FDEs

ẋ(t) = f̂(t, x(t), x(t− τ), ẋ(t− τ)), τ = const > 0

(ẋ(t− τ)
.
= ∂x(t− τ) is the invariant derivative [1])
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The report presents the results:
— on the solvability of initial-boundary value problems for linear hyper-

bolic equations with degeneracy;
— on the solvability of initial-boundary value problems for quasi-linear

hyperbolic equations with increasing dissipation.
The specificity of the problems studied in the first part is that the de-

generacy is uncharacteristic. Previously, such cases have not been studied.
The second part of the report presents the results on the global solv-

ability of various boundary value problems, including problems with non-
linear boundary conditions, for hyperbolic equations with nonlinear power-
increasing dissipation. Previously, only results on local solvability were
known for the studied equations.

Let us clarify that in all cases, the results were obtained on the existence
of regular solutions, i.e., solutions having all Sobolev generalized derivatives
included in the corresponding equations.

The study was carried out within the framework of the state contract of the

Sobolev Institute of Mathematics (project no. FWNF-2022-0008).
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The direct object of research in this paper is differential equations with
an involutive deviation of the argument.

Defined on the segment [0, T ] continuously differentiable a monotonically
decreasing function φ(t) is called an involution if φ(φ(t)) = t is executed
for t ∈ [0, T ]. The simplest example of an involution is the fractional linear
function

φ(t) =
a(T − t)

ct+ a
, a, c, T ∈ R

(in the case of c = 0, linear function), when for the numbers a, c and T , the
inequality holds a(cT + a) > 0; other examples can be found in [1].

The paper shows that the presence of terms with an involutive deviation
in the differential equation significantly changes the properties of solutions.
In particular, it is shown that the presence in an ordinary first-order differ-
ential equation with constant coefficients of a summand with an involutive
deviation leads to the appearance of proper functions for the Cauchy prob-
lem. Similar results are obtained for some non-local problems, as well as for
boundary value problems for parabolic and pseudoparabolic equations with
involution.
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The solvability of the following boundary value problem is investigated
for the third-order differential equations with a discontinuous alternating
coefficient at the highest derivative of the time variable.

For a bounded domain Ω from the space Rn with a smooth (for simplic-
ity, infinitely differentiable) boundary Γ, a positive number T is given, Q1

and Q2 are cylinders Ω×(−T, 0) and Ω×(0, T ) respectively, φ(t), f(x, t) are
given functions defined at t ∈ [−T, T ], x ∈ Ω, α = (αi), β = (βi), i = 1, 6,
are given vectors with real coordinates, ∆ is Laplace operator on spatial
variables, L is differential operator whose action on a given function v(x, t)
is defined by the equality

Lv = φ(t)D3
t v +∆v.

Function u(x, t) is a solution to equation

Lu = f(x, t)

in cylinders Q1 and Q2.
In addition, the conjugation conditions are met for function u(x, t):

α1u(x,−0) + α2u(x,+0) + α3ut(x,−0) + α4ut(x,+0)

+α5utt(x,−0) + α6utt(x,+0) = 0, x ∈ Ω,

β1u(x,−0) + β2u(x,+0) + β3ut(x,−0) + β4ut(x,+0)

+β5utt(x,−0) + β6utt(x,+0) = 0, x ∈ Ω,
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u(x, t)|Γ×(−T,0) = 0, u(x, t)|Γ×(0,T ) = 0.

The existence and uniqueness theorems of regular solutions are proved.
The results of the study of the influence of parameters on the correct-

ness of a certain conjugation problem for a differential equation of the
Boussinesq–Love type are also presented. Theorems showing the influence
of parameters on uniqueness and non-uniqueness, the existence and non-
existence of regular solutions to this problem are proved.

These studies are continuation of works [1–2].
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Currently, the field of magnonics is attracting more interest due to the
fact that the magnon current is also a means of information transmission.
An important direction in magnetic materials is the study of the dynamics
of spin wave propagation. Since a spin wave propagating in a magnetic
material is damped, it is necessary to enhance the amplitude of the spin
wave. Recently the spin-wave amplification model is studied qualitatively
by phase–plane methods for linear and nonlinear cases in [1]. The nonlinear
transport equation for the magnetostatic spin wave envelope was analyzed
by the characteristic method, and the dependence of the amplitude on the
nonlinearity coefficient on the phase portraits was established in [2].

Due to the lack of an analytical solution, a quantitative study of the
dynamics of the evolution of the initial profile of the spin wave is of interest.
For this purpose, the present work considers the application of a fourth-order
compact scheme [3] for the numerical solution of the initial model.
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By systems of evolutionary differential equations we mean systems of
the form

∂u

∂t
= f

(
x,u,

∂u

∂x
, . . . ,

∂ku

∂xk

)
.

Here x = (x1, . . . , xn) is a vector of independent spatial variables, t is time,
u = (u1, . . . , um) and f = (f1, . . . , fm) are vector functions. We suppose
that the functions f1, . . . , fm belongs to the class C∞ within its domain.
The symbol ∂iu/∂xi (i = 1, . . . , k) means the set of all partial derivatives
of order i by x.

The main idea is as follows.
This system generates a flow on maximal integral manifolds of some

completely integrable distributions P [1, 2], i.e., its right parts defines Lie
algebra of symmetries of P . Consider the case when the distribution is
generated by some overdetermined system of partial differential equations

∂q+1v

∂xσ+1i
= Vσ+1i

(
x,v,

∂v

∂x
, . . . ,

∂qv

∂xq

)
, |σ| = σ1+· · ·+σn = q; i = 1, . . . n,

where σ = (σ1, . . . , σn) is a multi-index, σi ∈ {0, 1, . . . , q}, |σ| = σ1+· · ·+σn,
σ + 1i = (σ1, . . . , σi−1, σi + 1, σi+1, . . . , σn) v is a vector-valued function of
x = (x1, . . . , xn).

Let S be a shuffling symmetry of the distribution P [3]. There are a
unique set of functions φ1, . . . , φm on Jq such that

S =
m∑
j=1

φj ∂

∂vjo
+

∑
|σ|=1

j=1,...,m

Dσ(φj)
∂

∂vjσ
+ · · ·+

∑
|σ|=q

j=1,...,m

Dσ(φj)
∂

∂vjσ
.
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Here o = (0, . . . , 0) is zero multi-index, Dσ = Dσ1
1 ◦ · · · ◦ Dσn

n , and Ds
i is the

s-th degree of the operator

Di =
∂

∂xi
+

∑
0≤|σ|≤q
j=1,...,m

vjσ+1i

∂

∂vjσ
+

∑
0≤|σ|=q
j=1,...,m

V j
σ+1i

(x,vσ)
∂

∂vjσ
(i = 1, . . . n).

Note that the distribution P is generated by the vector fields D1, . . . ,Dn.
The functions φ1, . . . , φm satisfy the following system:

Dσ+1i(φj)−
n∑

s=1

q∑
|µ|=0

Dµ(φs)
∂V j

σ+1i

∂vsµ
= 0, i = 1, . . . , n; j = 1, . . . ,m.

Solving this system we can find the vector field S. Shifts along this
vector field of solutions of the overdetermined system, we obtain a solution
to the evolutionary system.

This method will be illustrated using the examples of the Boussinesq
equation [4] {

ut = uxx + 2vx,

vt = −vxx + 2uux − 2uy.

It made it possible to construct a family of exact solutions of the Boussi-
nesq equation which depends on six arbitrary parameters and one arbitrary
function.

The research was partialy supported by a grant of the Russian Science Foun-

dation (project no. 23-21-00390).

REFERENCES

1. Kushner A.G., “Dynamics of evolutionary differential equations with several
spatial variables,” Mathematics, 11, No. 2, 335–346 (2023).

2. Kushner A.G., Tao S., “Evolutionary systems and flows on solutions spaces
of finite type equations,” Lobachevskii Journal of Mathematics, 44, No. 9,
3944–3950 (2023).

3. Kushner A.G., Lychagin V.V., Rubtsov V.N., “Contact geometry and non-
linear differential equations,” in: Encyclopedia of Mathematics and Its Appli-
cations, Cambridge University Press, Cambridge, 2007, pp. 496.

4. Shabat A.B. (editor-in-chief), Encyclopedia of Integrable Systems,
http://home.itp.ac.ru/ adler/E/e.pdf

82



Russian-Chinese Conference “Differential and Difference Equations”

MATHEMATICAL MODELING
OF THE DYNAMICS OF CO OXIDATION

OVER Pt/MWCNB

Lashina E.A.1,2

1Boreskov Institute of Catalysis, Novosibirsk, Russia;
2Novosibirsk State University, Novosibirsk, Russia;

lashina@catalysis.ru

To describe the dynamics of chemical reactions, one or another reac-
tion mechanism is assumed, which is the basis for constructing a kinetic
model. Modern physico-chemical methods of surface research indicate the
need to take into account various structures or active phases in the model.
Thus, there is a need to construct and study systems of nonlinear ordinary
differential equations.

In particular, in our work [1], a mathematical model was proposed de-
scribing the temperature dependencies of the concentration of CO in the
gas phase under the conditions of the CO oxidation on platinum supported
on multilayer carbon nanotubes (MWCNB) in a continuous stirred-tank
reactor:

dθCO

dt = k1PCOθf − k−1θCO − k3θO2θCO,

dθO2

dt = k2θf − k3θO2θCO − k4θO2θf ,

dθO
dt = 2k3θO2θCO − k5θO,

dθOx

dt = k5θO − k6PCOθOx,

dPCO

dt = α(P 0
CO − PCO)− γ(k1PCOθf − k−1θCO + k6PCOθOx),

(1)

where θf = 1 − θCO − θO2 − θO − θOx ≥ 0 and the model variables are
non-negative. The parameters of the model ki, α, γ, P

0
CO ≥ 0.

As a result of parametric analysis, parameter regions were identified
in which the system has a single steady-state. In addition, as a result of
numerical analysis, it is shown that for some parameters values, system (1)
has a stable limit cycle.

Moreover, system (1) was studied under the assumption that part of the
parameters ki of the system depends on the temperature T according to
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the Arrhenius law, ki = ki,0exp(−Ei/(RT )), where R is the universal gas
constant.

As a result of the application of numerical methods, it is shown that for
some parameter values, the system describes the so-called dynamic hystere-
sis under conditions of heating and subsequent cooling of the catalyst.

The author was supported by the Ministry of Science and Higher Education

of the Russian Federation within the governmental order for Boreskov Institute

of Catalysis (project AAAA-A21-121011390053-4).
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Mathematical models of elastic bodies with cracks subject to unilateral
boundary conditions of Signorini’s type on curves or surfaces of cracks,
have been actively studied since the 1990s (see, for example, [1–3]). A
nonlinear mathematical model describing equilibrium of a two-dimensional
elastic body with two thin rigid inclusions is investigated. It is assumed
that two rigid inclusions have one common connection point. Moreover, a
connection between two inclusions at a given point is characterized by a
positive damage parameter. Rectilinear inclusions are located at a given
angle to each other in an initial state. A nonlinear Signorini condition
is imposed, which describes the contact with the obstacle, as well as a
homogeneous Dirichlet condition is set on corresponding parts of the outer
boundary of the body. An optimal control problem for the parameter that
specifies the angle between inclusions is formulated. The quality functional
is given by an arbitrary continuous functional defined on the Sobolev space.
The solvability of the optimal control problem is proved. A continuous
dependence of solutions on varying angle parameter between the inclusions
is established.

The work has been supported by the Ministry of Science and Higher Education
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In this work, a space-time spectral method based on a Legendre–Galer-
kin–Chebyshev collocation in space and a Legendre-tau method in time
is presented for a parabolic inverse problem with control parameters. The
nonlinear term is collocated at the Chebyshev–Gauss–Lobatto points imple-
mented by the fast Legendre transform. Suitable basis functions are used
in each direction, which yields an algebraic system of sparse matrices. The
approximation results of the Chebyshev interpolation operator in the Leg-
endre norm are given. Numerical examples are compared with some other
methods to confirm the efficiency and capability of our method.
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The non-Newtonian flow in porous medium has attracted much attention
due to its important role in composite materials and petroleum industry.
However, due to the spatial multi-scale of porous medium and the rheolog-
ical properties of fluids, this flow mechanism is very complex.

This report mainly introduces the mathematical modeling of generalized
Newtonian fluid flow in porous medium using asymptotic homogenization
method. The local problem on periodic cells is obtained to describe the
local transmission of generalized Newtonian fluid in pores. Through the-
oretical analysis of local problems, the permeability tensor of Generalized
Newtonian fluid is obtained, which is proved to be symmetric and positive
definite. A least squares finite element numerical solution for local prob-
lems has been developed based on the physical properties of microscopic
pore structures. The solution of local problems can not only determine the
accurate distribution of velocity, pressure and non Newtonian viscosity in
a single hole, but also evaluate the permeability coefficient and effective
viscosity of generalized Newtonian fluid in porous medium.

The micro flow of Carreau–Yasuda fluid in three-dimensional porous
ceramics was simulated, and the proposed mathematical model and numer-
ical method were validated. The sensitivity of non Newtonian viscosity to
permeability and effective viscosity was discussed through numerical simu-
lation.

Theorem. The solution V
(j)
i of the local problem has the following

relationship with the local problem:

⟨v(0)i ⟩ = Kj
i

gj − p
(0)
,xj

|gj − p
(0)
,xj |

,

where Kj
i =

∫
Ωyf

V
(j)
i dy is the permeability tensor and Kj

i is symmetric

positive definite. Since V
(j)
i (y, |gj − p

(0)
,xj |) are nonlinear vector functions,
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in fact the tensor Kj
i (|gj − p

(0)
,xj |) is a symmetric positive definite tensor

composed of nonlinear tensor functions.
The authors were supported by the Natural Science Foundation of Liaon-

ing Province of China (project No. 2022-BS-093) and the Fundamental Research

Funds for the Central Universities (project No. 3132023203, No. 3132023501) the

Educational Science Planning Projects of Liaoning Province of China (project
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The article considers the resonant characteristics of forced vibrations of
a string with moving boundaries. The analytical method was developed in
relation to obtaining an exact solution of the wave equation with a higher
class of conditions on moving boundaries that differ from the boundary
conditions of the first kind.

The differential equation describing forced strings is:

Ztt(x, t)− a2Zxx(x, t) = ω2
0B cosW0

(
ω0t
)
.

Border conditions:
Z(0, t) = 0; Z

(
l0(t), t

)
= 0.

The initial conditions do not affect the resonant properties of linear systems,
so they are not considered in this problem [1]. Performing transformations,
similar to transformations [2, 3], we obtain an expression for the total am-
plitude at the point ξ = ξ0(τ), corresponding to the maximum amplitude
of oscillations

A2
n(τ) =


 b(τ)∫

0

Fn(ζ) cosΦn(ζ)dζ


2

+

 b(τ)∫
0

Fn(ζ) sinΦn(ζ)dζ


2 .

Thus, an expression for the amplitude of system oscillations in the nth
dynamic mode has been obtained using the application of special functional
equations.
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We study the variational Prony problem of a linear difference equation
coefficients identification when data contains disturbances lying on a given
linear manifold. The projectivity and the consistency properties of the
target function are proven, and the numeric algorithm for finding global
minimum based on inverse iterations is proposed. Formulas for optimal
filtering of disturbances and additive noise are given. Numeric results are
presented.

The system under discussion has the form (for k = 1, N − n)

xk+n + αn−1xk+n−1 + · · ·+ α0xk = βnuk+n + · · ·+ β0uk, (1)

or: Gz = 0, z
.
= [x1;u1; . . . ;xN ;uN ] , G = toeplitz(N−n)×2N [αi,−βi] .

The measured data ž = z+η+s ∈ R2N contains random η and deterministic
s = Sπ terms with given matrix S : ∀θ imS∩kerGθ = 0, θ

.
= [α;β] ∈ R2n+1.

The variational Prony problem [1–3] is to estimate z, π [4] and θ
minimizing target function [3]

J = (ž − z − Sπ)
⊤
(ž − z − Sπ) → min

π,z,θ:Gθz=0
.

Theorem 1. Let Πθ
.
= G⊤ (GG⊤)−1

G. The minimum point of J is

θ̂ = argmin
θ
ž⊤
(
Πθ − Π̃θ

)
ž, Π̃θ

.
= S̃

(
S̃⊤S̃

)−1

S̃⊤, S̃
.
= ΠθS,

π̂ =
(
S̃⊤S̃

)−1

S̃⊤Πθ̂ ž, ẑ =
(
I −Πθ̂

)
(ž − Sπ̂) .
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A finite algorithm for calculating the approximate value of θ lying in a
small θ̂-neighborhood E ⊂ R2n+1 (diamE −→

∥η∥→0
0) is proposed.

Uniqueness conditions are obtained. Let Hθ be the basis of kerGθ.
Definition 1. Let’s call the vector w

.
= [w1; . . . ;wN−n] the impulse re-

sponse function of the system (1) if w = [xn+1; . . . ;xN ], where [xn+1; . . . ;xN ]
is the solution of the system (1) with the function u = [1; 0; . . . ; 0] in the
right side under zero initial conditions [x1; . . . ;xn] = [0; . . . ; 0].

Theorem 2. In system (1), the θ parameter is locally identifiable if any
of the three sufficient conditions for the domain θ ∈ Θ is met: 1) the vector
α is fixed; 2) the vector β is fixed; 3) the allowable increments dα, dβ are

not connected by the linear relation dβ =

[w1 ... wn+1

. . .
...

0 w1

]
dα.

Definition 2. A vector (grid function) x ∈ RN will be called a quasi-
polynomial of degree n(< N − 1) if it is the solution of some homogeneous
difference equation (1) of order n: ∃θ : Gθx = 0, and at the same time there
is no equation (1) of a smaller order m < n, the solution of which would be
the vector x.

Denote Qn ⊂ RN the set of all quasi-polynomials of order 6 n.
Theorem 3. If the columns si of the matrix S

.
= [s1, . . . , sq] ⊂ RN are

not quasi-polynomials of degree 2n or lower, i. e. si ̸∈ Q2n, i = 1, q, then
in a homogeneous system (1) the parameter θ

.
= [α0; . . . ;αn−1] is globally

identifiable.
The study was carried out within the framework of the state contract of the
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REFERENCES

1. Pereyra V., Scherer G., “Exponential data fitting,” in: Exponential Data Fit-
ting and Its Applications, Bentham Science Publishers, 2010, pp. 1–26.

2. Egorshin A.O., “Counter equations: smoothing, filtration, identification,”
Siberian Electronic Mathematical Reports, 17, 1322–1351 (2020).

3. Lomov A.A., “Joint identifiability of coefficients of linear difference equations
of object and additive disturbances,” Journal of Mathematical Sciences, 221,
No. 6, 857–871 (2017).

4. Andrievsky B.R., Furtat I. B., “Disturbance observers: methods and applica-
tions,” Automation and Remote Control, 81, No. 9, 1563–1610 (2020).

92



Russian-Chinese Conference “Differential and Difference Equations”

TAYLOR DECOMPOSITION AND DISCRETE
ANALYTIC FUNCTIONS OF PARABOLIC TYPE

Lu X.1, Danilov O.A.2

1Novosibirsk State University, Novosibirsk, Russia; s.lu1@g.nsu.ru
2Novosibirsk State University, Novosibirsk, Russia; odanilov@ngs.ru

The aim of this paper is to establish the existence and singularity theo-
rems and singularity for a discrete analytic function of parabolic type in the
positive quadrant of the Gaussian plane. Let G+ = {Z+ + iZ+}. Denote
A(C) and D(G+) the spaces of analytic functions of exponential type and
the discrete analytic functions of parabolic type, defined in C and G+ re-
spectively. For the exponent e(ζ, z) = e(ζ, x, y) = eζx

(
(eζ−1)2+1

)y
, define

the pseudo-degrees {πk(z)}∞k=0, by the formula e(ζ, x, y) =

∞∑
k=0

πk(z)

k!
ζk for

ζ ∈ C and z = x+ i y ∈ G+.
Let us consider the mapping

Θ:F (ζ) → f(z),

Θ

( ∞∑
k=0

akζ
k

)
=

∞∑
k=0

akπk(z).
(1)

The following theorem is proved in [1].
Theorem. The mapping Θ: A(C) → D(G+), defined by formula (1)

is surjective. The core KerΘ of this mapping consists of integer functions
F (ζ), which is of the form:

F (ζ) =
H(ζ)

Γ(−ζ)
,

where H(ζ) is an arbitrary integer function and Γ(ζ) =

+∞∫
0

tζ−1e−tdt is the

Euler gamma-function.
In paper [2] the similar theorem was proved for discrete analytic func-

tions of the second type.

93



Russian-Chinese Conference “Differential and Difference Equations”

REFERENCES

1. Lu X., “Discrete analytic functions of parabolic type and Taylor series,” Mas-
ter’s thesis, NSU, 2021, pp. 1–20.

2. Mednykh A.D., “Discrete analytic functions and Taylor series,” in: Theory of
mappings, its generalizations and applications, Naukova Dumka, Kiev, 1982,
pp. 137–144.

94



Russian-Chinese Conference “Differential and Difference Equations”

REPRESENTATION OF SOLUTIONS
OF THE NONLINEAR EQUATIONS

IN THE RING RESONATOR

Lukianenko V.A.1, Khazova Yu.A.1,2

1V. I. Vernadsky Crimean Federal University, Simferopol, Russia;
art-inf@yandex.ru

2Crimean Engineering Pedagogical University named after Fevzi Yakubov,
Simferopol, Russia; hazova.yuliya@hotmail.com

The mathematical model in the ring resonator with coordinate transfor-
mation, which consists of nonlinear partial differential equations [1]

ut + u = D△u+K|A(r, z = 0, t)|2, r = (x, y), (1)

A(r, z = 0, t+ tr) = (1−R)
1
2Ain(r)

+Reiφ0 exp iL△{A(r, z = 0, t)eiu(r,t)}, (2)

−2ik0
∂A(r, z, t)

dz
= △A(r, z, t), A(r, z = 0, t) = A0(r, t), (3)

is considered in the paper. Here u(r, t) is an unknown phase modulation
function, which describes the phase shift of a light wave in a nonlinear
medium; r = (x, y) is the radius-vector in the cross-section of the light field;
z is the longitudinal coordinate; t is the time; △ is the Laplacian, which
describes the diffusion process in a nonlinear medium; D is the normal-
ized diffusion coefficient; K is the coefficient of nonlinearity of the medium;
|A(r, z = 0, t)|2 is the intensity of the light field which is incident on the
nonlinear medium; A(r, z, t) is unknown function, which describes the com-
plex slowly varying amplitude of the light field inside the resonator; R is
the reflection coefficient of the mirror intensity; Ain(r) is the complex am-
plitude of the input light wave; tr is the time of field propagation in the
resonator; φ0 is the constant phase shift of the light wave in the resonator;
L is the resonator length; exp(iL△) is the spread operator.

For (1)–(3) stationary solutions us and As were obtained:

us =
(1−R)k

1− 2R cos(us + φ0) +R2
, k = K I0, I0 = |Ains|2.
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The corresponding linearized initial-boundary value problems for the
general area and for the circle with unknown functions u = us + v, A =
As + B were considered [3]. The original model (1)–(3) can be reduced to
the nonlinear integral equation [2].

Theorem. Solutions of the problem (1)–(3) in the nonlinear integral
form can be represented as:

v(θ, t) =
∞∑

n=−∞
(vne

ω(n)t + fn)e
inθ = f(θ) +

∞∑
n=−∞

vne
ω(n)t+inθ,

B(θ, t) =

∞∑
n=−∞

(λnvne
ω(n)t + αnfn)e

inθ,

αn =
(1−R)1/2 + iAsR(1− iρn2)ei(us+φ0)

1−R(1− iρn2)ei(us+φ0)
,

λn =
iAsR(1− ρn2)ei(us+φ0)

1−R(1− iρn2)ei(us+φ0)
,

ωc(n) = −1− µ2n2 +
4RK|As|2(sin(us + φ0) + ρn2 cos(us + φ0))

1− 2R(1 + ρn2) cos(us + φ0) +R2

or in the integral representation

v(θ, t) =
1

2π

∫ π

−π

k(θ − ξ, t)v(ξ)dξ + f(θ),

B(θ, t) =
1

2π

∫ π

−π

k(θ − ξ, t)v(ξ)dξ +
1

2π

∫ π

−π

a(θ − ξ)f(ξ)dξ,

k(θ, t) =W{λneω(n)t}(θ, t), a(θ) =W{αn}(θ).
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The inverse problems on recovering the unknown lower coefficient in lin-
ear and nonlinear second-order elliptic equations with boundary integral
conditions of overdetermination are considered. Namely, for given func-
tions f(x), β(x), h(x) and constant µ we find the function u and constant k
satisfying the equation

− div(M(x)∇u) +m(x)u+ kr(u) = f, (1)

almost everywhere in Ω, the boundary condition

B1u|∂Ω = β(x), (2)

and the condition of overdetermination∫
∂Ω

B2uh(x) ds = µ. (3)

Here Ω ∩ Rn is a bounded domain with the boundary ∂Ω ∈ C2, M(x) =
mij(x) is a matrix of functions mij(x), i, j = 1, 2, . . . , n, m(x) is a scalar
function, r(s) is a continuous function defined on (−∞,+∞); B1, B2 are
the linear differential operators acting in the spaces of functions defined on
the boundary ∂Ω. The operator M = − div(M(x)∇) +m(x)I : W 1

2 (Ω) →
(W 1

2 (Ω))
∗ is supposed to be strongly elliptic (I is the identity operator).

The continuous dependence of the strong solution on the input data of
the inverse problem (1)–(3) is proved in three cases: 1) r(s) = s, B1u = u,
B2u = ∂u

∂N
= (M(x)∇u,n), n is the unit vector of the outward normal to

the boundary ∂Ω; 2) r(s) = s, B1u = ∂u
∂N

+ σ(x)u, B2u = u; 3) r(s) is a

nonlinear monotone power-type function, B1u = u, B2u = ∂u
∂N

.

In the hypotheses of the existence and uniqueness theorems [1, 2] the
solution of the problem (1)–(3) continuously depends on the input data f ,
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β, h and µ in cases 1) and 2). The estimate

∥u1−u2∥2+|k1−k2| ≤ K
(
|µ1−µ2|+∥f1−f2∥+∥β1−β2∥j+1/2+∥h1−h2∥1/2

)
holds, where {ui, ki} is the unique solution of the problem (1)–(3) with
f = fi, β = βi, h = hi and µ = µi, i = 1, 2; K is a positive constant; j = 1
for case 1) and j = 0 for case 2). In case 3), under the hypotheses of the
existence and uniqueness theorem [3] the solution of the problem (1)–(3)
continuously depends on µ and the estimate

∥u1 − u2∥2 + |k1 − k2| ≤ H|µ1 − µ2|

holds, where H > 0 is a positive constant.
The work was supported by the Russian Science Foundation, the Government
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In the semistrip Π = {(x, t) : 0 ≤ x ≤ 1, 0 ≤ t < ∞} we consider
the following initial-boundary value problem for nonautonomous first-order
quasilinear hyperbolic system

∂tuj +Aj(x, t, u)∂xuj +
n∑

k=1

Bjk(x, t, u)uk = 0,

0 < x < 1, t > 0, 1 ≤ j ≤ n,

(1)

with the reflection boundary conditions

uj(0, t) =
m∑

k=1

pjkuk(1, t) +
n∑

k=m+1

pjkuk(0, t), t ≥ 0, 1 ≤ j ≤ m,

uj(1, t) =
m∑

k=1

pjkuk(1, t) +
n∑

k=m+1

pjkuk(0, t), t ≥ 0, m < j ≤ n,

(2)

and the initial conditions

uj(x, 0) = φj(x), 0 ≤ x ≤ 1, j ≤ n, (3)

where n ≥ 2 and 0 ≤ m ≤ n are fixed integers. The unknown function
u = (u1, . . . , un) and the initial function φ = (φ1, . . . , φn) are vectors of
real-valued functions. The coefficients Aj and Bjk are real-valued smooth
functions and the n×n matrix P = (pjk) has real constants. The functions
Aj for all (x, t) ∈ Π and for all Θ = (θ1, . . . , θn) are supposed to satisfy the
following conditions:

Aj(x, t,Θ) ≥ Λ0, 1 ≤ j ≤ m, Aj(x, t,Θ) ≤ −Λ0, m+ 1 ≤ j ≤ n, (4)

for some Λ0>0.
The linear nonautonomous problem (1)–(3), namelyAj(x, t, U) ≡ Aj(x, t),

Bjk(x, t, U) ≡ Bjk(x, t), is investigated in [1, 2]. Let Aj and Bjk belong to
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C1(Π) and be bounded in Π together with their first order derivatives. From
theorem 1.8 in [1] we have this proposition.

Theorem 1. Let the linear problem (1)–(3) be decoupled, namely
Bjk = 0 for j ̸= k. Then there exists a positive real Te such that for
any Aj satisfying (4) and for any Bjj all classical solutions to this problem
are constant zero functions for all t > Te if and only if the matrix Pabs is
nilpotent, that is

(Pabs)
n = 0, where Pabs = (|pij |)i,j=1,...,n. (5)

From theorem 2.7 in [2] we have this proposition.
Theorem 2. Let the linear problem (1)–(3) be strictly hyperbolic,

namely

A1(x, t) > · · · > Am(x, t) > 0 > Am+1(x, t) > · · · > An(x, t),

and the coefficients in the system (1), (2) fulfill the conditions (4), (5), then
for any γ > 0 there exist ϵ > 0 and M = M(γ) ≥ 1 such that, whenever
maxj,k(supx,t∈Π(|Bj,k(x, t)|, |∂tBj,k(x, t)|, |∂xBj,k(x, t)|)) < ϵ, the classical
solution u to problem (1)–(3) fullfils the bound

∥u(·, t)∥C1[0,1] ≤Me−γt∥u0∥C1[0,1], t ≥ 0.

The paper [3] deals with asymptotic properties of solutions to initial-
boundary value problems (1)–(3) for nonautonomous first-order quasilinear
hyperbolic systems with two variables. Case of smoothing boundary condi-
tions (5) is considered. For decoupled hyperbolic systems we prove that all
smooth solutions stabilize to zero for finite time not depending on the initial
function. For non-decoupled strictly hyperbolic systems we prove that zero
solution to quasilinear problem is exponentially stable.

The study was carried out within the framework of the state contract of the
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In this topic, we shall investigate the global existence, uniqueness and
regularity of weak solutions to an initial-boundary value problem for a three-
phase-field model which is proposed to simulate the evolution of Greenland
ice-sheet based on criteria that lead to both physical and mathematical con-
sistency. For global solutions, we calculate the global-in-time weak solutions
by applying the method of continuation of local solutions.

We establish the consistent three-phase-field model which contains of
four second order non-conserved parabolic partial differential equations with
temperature based on multi-phase-field theories [1] and the free energy func-
tional firstly established by Steinbach I. et al [2] for multi-phase systems in
1996.

The consistent three-phase-field problem is as follows

∂u1

∂t − (α1 + α2)∆u1 = −α2∆u2 − α1∆u3 + β1f1(u1, u2, u3, u4)

−β2f2(u1, u2, u3, u4), (t,x) ∈ (0, T )× Ω,
∂u2

∂t − (α2 + α3)∆u2 = −α2∆u1 − α3∆u3 + β2f2(u1, u2, u3, u4)

−β3f3(u1, u2, u3, u4), (t,x) ∈ (0, T )× Ω,
∂u3

∂t − (α1 + α3)∆u3 = −α1∆u1 − α3∆u2 − β1f1(u1, u2, u3, u4)

+β3f3(u1, u2, u3, u4), (t,x) ∈ (0, T )× Ω,
∂u4

∂t −D∆u4 = r1
∂u1

∂t + r2
∂u2

∂t + r3
∂u3

∂t + f(x, t),

(t,x) ∈ (0, T )× Ω,

ui(0, x) = ui0, u10 + u20 + u30 = 1, x ∈ Ω,
∂ui

∂n = 0 for i = 1, 2, 3, 4, (t,x) ∈ [0, T ]× ∂Ω,

(1)

here T > 0, n denotes the outer unitary normal vector of ∂Ω,

f1 = u33 − u31 + u3u
2
1 + u3u

2
2 − u23 − u1u

2
2 − u1u

2
3 + u21 + eu3u4 − eu1u4,

f2 = u31 − u32 + u1u
2
2 + u1u

2
3 − u21 − u2u

2
1 − u2u

2
3 + u22 + eu1u4 − eu2u4,

f3 = u32 − u33 + u2u
2
3 + u2u

2
1 − u22 − u3u

2
1 − u3u

2
2 + u23 + eu2u4 − eu3u4.
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Firstly, we give the definition of weak solutions, then by using Banach
fixed-point Theorem, we derive the existence of local weak solutions in a
closed ball. Soon afterwards, we show uniform a priori estimate to obtain
the global-in-time solutions. Finally, we investigate the regularity of the
global weak solutions under some assumptions.

Theorem 1. Suppose open bounded region Ω ∈ R3, initial values u10,
u20, u30 and u40 ∈ H1(Ω) and for any positive time T , f ∈ L∞(0, T ;L2(Ω)),
on the conditions that we choose a suitable m > 0 such that 0 < α1, α2, α3,
|r1|, |r2|, |r3| < m, there exists a unique global solution (u1(t,x), u2(t,x),
u3(t,x), u4(t,x)) ∈ (L∞(0, T ;H1(Ω))∩L2(0, T ;H2(Ω)))4 and ∂ui

∂t ∈ L2(QT )
(i = 1, 2, 3, 4) for the initial-boundary value problem (1).

Theorem 2. Assume Ω ∈ R3 is open bounded, initial value (u10, u20,
u30, u40) ∈ (H2(Ω))4, (∂u10

∂t ,
∂u20

∂t ,
∂u30

∂t ,
∂u40

∂t ) ∈ (L2(Ω))4 and for any T > 0,

f ∈ L∞(0, T ;L2(Ω)), ∂f
∂t , ∇f ∈ L2(0, T ;L2(Ω)), then there exists a unique

global solution (u1(t,x), u2(t,x), u3(t,x), u4(t,x)) ∈ (L∞(0, T ;H2(Ω)) ∩
L2(0, T ;H3(Ω)))4 and ∂ui

∂t ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) (i = 1, 2,
3, 4) for the initial-boundary value problem (1) under some assumptions.

The authors are supported by Science and Technology Commission of Shang-

hai Municipality (20JC1413600), the National Natural Science Foundation of
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ON BEHAVIOR OF SOLUTIONS
TO A SOBOLEV TYPE EQUATION AT INFINITY

Ma X.
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We consider the Cauchy problem for one equation unsolvable with re-
spect to the highest time derivative

(∆− αI)utt + ω2uxnxn = 0, t > 0, x ∈ Rn (n = 2, 3), (1)

α > 0, ∆ is the Laplace operator in x. This equation for α = 0 gives us the
Sobolev equation

∆utt + ω2uxnxn = 0. (2)

It describes small vibrations of a rotating fluid for n = 3. Our aim is to
study the asymptotic behavior of a solution to the Cauchy problem for (1)
as t→ ∞.

A systematic study of properties of solutions to equations unsolvable
with respect to the highest order derivative was begun in the works of
S. L. Sobolev [1].

We continue investigations begun in [2] and prove theorems on asymp-
totic behavior of solutions to the Cauchy problem for (1) as t→ ∞ . Namely,
the form of a limit function is established and a rate of convergence is ob-
tained.

The author expresses gratitude to Prof. G.V. Demidenko for statement of the
problem and his attention to the work.
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In many mathematical models developed within the framework of the ray
approximation for the purpose of studying direct and inverse problems posed
in inhomogeneous media, the behavior of rays is described by geodesics of
the Riemannian metric. Metrics are considered known in direct problems,
and they are unknown in inverse problems. One of the approaches to solving
inverse problems in which geodesics arise is to linearize it. Namely, it is
assumed that the behavior of geodesics of an unknown metric differs slightly
from the behavior of geodesics of some a priori given Riemannian metric.

In seismic problems, the density of an elastic medium as a whole in-
creases noticeably with depth [1]. If there are good reasons to believe that
the properties of the medium change quite smoothly, then the isotropic
Riemannian metric is usually used,

ds2 = n2(x, y)
(
dx2 + dy2

)
= e2µ(x,y)

(
dx2 + dy2

)
, (1)

the simplest of which arises under the assumption that the speed of propa-
gation of elastic waves increases linearly with depth (a two-dimensional case
is considered). Geodesics of such a metric are arcs of circles with centers
at points of the line y = −b/a. The metric (1), with n(x, y) = (ay + b)−1,
is sometimes used in the numerical implementation of the procedure for
linearization of the inverse kinematic problem of seismics (IKPS).

In mathematical models of 2D tomography, the most common canonical
domain is the unit disk. In the disk B we are interested in the metrics of
negative and positive curvature. In the upper half-plane we are interested
in the metrics of negative curvature.

Currently, numerical modeling and computational simulation within the
framework of problems posed in areas containing inhomogeneous complex
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media are experiencing some difficulties due to the shortage of specific Rie-
mannian metrics with known characteristics that are suitable for use in
numerical experiments for research purposes.

A family of metrics are proposed that significantly expand the possibili-
ties of numerical modeling of direct and inverse problems posed in inhomo-
geneous media. At the first stage, a generalization is made of the metrics
of constant curvature in a disk and half-plane. The second stage of the
generalization process made it possible to expand the list of suitable Rie-
mannian metrics. Thus, we select and use conformal mapping of the unit
disk onto the half-plane and its inverse, which allow metrics constructed in
a half-plane to be converted into metrics in a disk, and vice versa.

The geometric characteristics of the proposed families of three-parameter
Riemannian metrics, defined in the half-plane and disk, are established; both
the original ones and their images under conformal mapping of the areas.
These are the components of the metric tensors, the Christoffel symbols, the
curvature tensors and the scalar curvature of metrics of variable negative or
positive curvatures. The usage of the conformal mappings for transforming
the systems of geodesics into each other, led to non-standard formulations
of IKPS and inverse problems for inhomogeneous media and, in particular,
problems of refraction tomography.

An original interpretation has been proposed for one of the mathemat-
ical models of the IKPS, posed in a half-plane, as an external problem of
refractive tomography with incomplete data, posed in a disk [2]. The prob-
lems of refraction tomography, consisting in the restoration of functions,
vector or tensor fields from their ray transforms along geodesics, can be for-
mulated as generalized IKPS in the half-plane for the restoration of scalar,
vector or tensor fields. The identified connections between the formulations
of IKPS and the problems of refraction tomography can mutually enrich the
methods of their research, and obtain solutions to these problems in new
original ways.

The authors were supported within the state task of the Sobolev Institute of

Mathematics SB RAS (project no. FWNF-2022-0009 (122041100003-2)).
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STABILITY CONSTANTS FOR DIFFERENTIAL
AND DIFFERENCE EQUATIONS WITH DELAY
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Perm National Research Polytechnic University, Perm, Russia;
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Consider a differential equation with concentrated delay

ẋ(t) = −
K∑

k=1

ak(t)x(t− hk(t)), t ≥ 0, (1)

and a difference equation

x(n+ 1)− x(n) = −
K∑

k=1

ak(n)x(n− hk(n)), n ∈ N0, (2)

which can be considered as a discrete analog to equation (1).
The following two stability conditions for equations (1) and (2) can be

considered as generalizations of the “3/2-theorem” by A.D. Myshkis.

Denote a(t) =
K∑

k=1

ak(t), h(t) = max
1≤k≤K

hk(t).

Theorem 1 [1]. Suppose ak(t) ≥ 0, hk(t) ≥ 0 for all k = 1,K. If

lim
t→∞

∫ t

t−h(t)

a(s) ds <
3

2
, (3)

then for the Cauchy function of equation (1) for some N,α > 0 the following
estimate is valid:

|C(t, s)| ≤ N exp

{
−α

∫ t

s

a(τ) dτ

}
, t ≥ s ≥ 0. (4)

Theorem 2 [2]. Suppose ak(n) ≥ 0, hk(n) ≥ 0 for all k = 1,K. If

lim
n→∞

n∑
i=n−h(n)

a(i) <
3

2
, (5)
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then for the Cauchy function of equation (2) for some N,α > 0 the following
estimate is valid:

|C(n,m)| ≤ N exp

{
−α

n∑
i=m

a(i)

}
, n ≥ m ≥ 0. (6)

The constant 3/2 is sharp in inequalities (3) and (5): it cannot be re-
duced without breaking estimates (4) and (6), which is proven by con-
structing corresponding examples. However, in these examples, there is a
significant difference. For differential equations (1), the sharpness of the
constant 3/2 is preserved regardless of whether the value h(t) is bounded or
not, and for difference equations (2), the sharpness of the constant 3/2 can
be proven only if h(n) can take arbitrarily large values. If h(n) is subjected
to the boundedness condition, then estimate (5) can be strengthened [3, 4].
A similar effect is observed for semi-autonomous equations: if the coeffi-
cients ak in equations (1) and (2) are constant, then for equation (1) the
constant 3/2 remains sharp, while for equation (2) it can be increased [4].

The author was supported by the Ministry of Science and Higher Education
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The system of equations is considered which describes three-dimensional
non-steady movements of heat conductive compressible viscous multifluids
[1–3]. This model is a generalization of the well-known Navier–Stokes–
Fourier model of heat conductive compressible viscous one-component flu-
ids [4, 5] and it includes the laws of conservation of masses, momenta and
energy. It is assumed that at every point of space, all components of the
multifluid are present, and each has its local velocity, and interaction be-
tween them can occur through the exchange of momentum, viscous friction
and through the heat exchange.

The characteristic feature of the equations under consideration, in ad-
dition to their nonlinearity, is the presence of higher order derivatives of the
velocities of all components in the conservation laws for momenta and en-
ergy, due to the composite structure of viscous stress tensors, which makes
it impossible to automatically expand the theory of heat conductive com-
pressible viscous one-component fluids to the case of multifluids.

This specificity of multicomponent movements can be described using
the concept of viscosity matrices. Unlike the one-component case in which
the viscosities are scalars, in the multicomponent case they form matrices
whose entries are responsible for viscous friction. Diagonal entries stand for
viscous friction inside each component, and friction between the components
is described by off-diagonal entries. In the case of diagonal viscosity matri-
ces, the equations might interact through lower order terms only. The more
complex case of non-diagonal viscosity matrices is looked at in the work.
In the general three-dimensional case the theorem is proved for the exis-
tence of a weak (dissipative) solution to the initial-boundary value problem
describing flows in a bounded domain [6–8].
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Some classes of nonautonomous time-delay systems are considered. We
study asymptotic properties of solutions to these systems and obtain es-
timates characterizing decay rates of the solutions at infinity. Estimates
for attraction sets for nonlinear time-delay systems are established. The
present work continues our investigations of properties of solutions to nonau-
tonomous time-delay equations (see, for example, [1–3]).

The study was carried out within the framework of the state contract of the
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We study a three-dimensional dynamic system with nonlinear smooth
functions, which simulates a circular gene network with negative feedback:

dx1
dt

= L1(x3)− Γ1(x1);

dx2
dt

= L2(x1)− Γ2(x2); (1)

dx3
dt

= L3(x2)− Γ3(x3).

Here and further assume j = 1, 2, 3. The smooth monotonically decreasing
functions Lj correspond to negative feedback. Degradation of components
xj is described by nonlinear smooth functions Γj . As an example, a similar
model with linear degradation was given in [1].

We consider the case when for all j = 1, 2, 3 there exists an xj such that

Γj(xj) = maxLj(xj−1) = Lj(0).

As in [2], the following two lemmas are established.
Lemma 1. The parallelepiped

Q = [0,Γ−1
1 (L1(0))]× [0,Γ−1

2 (L2(0))]× [0,Γ−1
3 (L3(0))]

is invariant for trajectories of the system (1).
Lemma 2. The system (1) has a unique equilibrium point S0 in the

interior of Q.
The construction of an invariant paralelepiped is also described in [3].
Let positive parameters pj = Γ′

j , −qj = L′
j be the derivatives of functions

Lj , Γj at the point S0. According to Vyshnegradsky criterion, see [4], if the
inequality

(p1 + p2 + p3)(p1p2 + p1p3 + p2p3) < p1p2p3 + q1q2q3 (2)
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holds, then the point S0 is hyperbolic.
Theorem. If the condition (2) is satisfied then the system (1) has a

cycle C in the invariand domain Q.
The trajectories of the system (1) lie on a two-dimensional invariant

surface.
The author was supported by the Russian Science Foundation (project no. 23-

21-00019).
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The article is considered two differential geometric approaches to solving
nonlinear hyperbolic systems in partial differential equations. Such equa-
tions are particular case of general Jacobi system [1]. Such systems define
a pair of differential 2-forms on the 4-dimensional space R4. Considered
system can be transform to a symplectic Monge–Ampere equation of hy-
perbolic type. After that we can define conditions under which the Monge–
Ampere equation can be transformed to the linear wave equation utx = 0
by a symplectic transformation [1].

Another way is as follows. We consider 5-dimensional 1-jet space J1R2

of functions with two independent variables [2]. 1-jet space is provided with
a contact structure defined by the Cartan distribution. If Laplace forms are
equals zero, the corresponding Monge–Ampere equation can be reduced to
the linear wave equation by a contact change of variables [3]. The solution
of the wave equation is well known. Applying inverse symplectic or contact
transformation to general solution of wave equation, we get the solution of
considered nonlinear equation.

Both of these methods will be illustrated using examples of equations
arising in the theory of filtration in porous media. Namely, we will consider
the problem of deep filtration of a suspension in a porous media [4] and the
problem of frontal displacement of oil by a solution of active reagents [5].
For them, conditions for symplectic and contact linearization are found and
exact solutions are constructed.

Example. Model of frontal displacement of oil by a solution of car-
bonized water in large-scale approximation has following form [5]{

st +Hx = 0,

(cs+ ϕ(1− s) + a)t + (cH + (1−H)ϕ)x = 0,
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where s(t, x) is a water saturation, c(t, x) is a concentration of carbon diox-
ide in water, H = H(s, c) is the Buckley–Leverett function, a = a(c) is a
sediment concentration at the pores, ϕ = ϕ(c) is a carbon dioxide concen-
tration in oil (diffusion), t is time. The x axis coincides with the direction
of fluid motion. Here ϕ(c) = c + δ1, a(c) = 0. This system can be reduced
to the wave equation by a symplectic transformation if and only if

H(s, c) = αs+ h(c),

where α and h are an arbitrary constant and an arbitrary function respec-
tively.

The conditions for the contact equivalence of the equation to the linear
wave equation have the form

H(s, c) = (βs+ γ)h(c),

where β, γ are arbitrary constants and h is an arbitrary function.
Thus, a class of exact solutions to the problem of frontal displacement

of oil by carbonated water through symplectic and contact transformation
has been obtained.
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A continuous-discrete system of functional-differential equations is a sys-
tem such that its state is described by two groups of interrelated variables:
some variables that are being functions of continuous time satisfy differen-
tial equations; others are being functions of discrete time satisfy difference
equations. This systems are also called hybrid.

Hybrid systems are applied in studying technical objects with impulse
and digital control, as well as in economic dynamics modeling [1].

It is natural to construct the solution of hybrid systems step by step,
integrating the system on each interval, but one can’t study asymptotic
properties of every hybrid system solution using this method, so the stability
problem for such systems is actual.

Various methods are used in hybrid systems stability studying. The
approaches based on the Lyapunov method are applied in papers [1–2], the
fixed point principle is applied in paper [3], the Azbelev’s W-method is
applied in paper [4].

Exact effective coefficient criteria for asymptotic stability can be ob-
tained for hybrid systems such that a continuous subsystem with continuous
time is a system of ordinary differential equations [5, 6].

As far as the author of the current paper knows, there are no exact effec-
tive coefficient stability criteria for hybrid systems such that the subsystem
with continuous time is a system of delay differential equations. Consider
the Cauchy problem for an example of the hybrid system of such class

ẋ(t) + ax(t− 1) = y(n), t ∈ [n, n+ 1),

x(t) = ψ(t), t ∈ [−1, 0),

y(n) = −bx(n),
x(0) = x0,

n ∈ N0, (1)

where a, b, x0 ∈ R, N0 = {0, 1, 2, . . . }, the initial function ψ is assumed to
be summable.
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System (1) is called asymptotically stable if limt→∞ x(t) = 0 for any ψ
and x0.

Let’s introduce the operator S that acts in space C[0, 1]:

(Sx)(τ) = x(1)(1− bτ)− a

∫ τ

0

x(s) ds.

Consider the equation

µ− b+ (a+ b)e−µ = 0 (2)

for the complex variable µ.
Theorem. Suppose a ̸= 0. Then the following statements are equiva-

lent:
• system (1) is asymptotically stable,
• all eigenvalues of the operator S lie inside the unit circle,
• the inequality |µ| > |a| holds for any root of equation (2).

Corollary. Suppose (ea − 1)/a ≤ 2. The system (1) is asymptotically
stable iff −a < b < a coth(a/2).

The author was supported by the Russian Science Foundation (project no. 22-
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We describe all nonequivalent representations of the algebra sl2(R) in the
space of vector fields VectR2 (see [1]). For each of these representations it
was found all ordinary differential equations admitting representation data,
in terms of a basis differential invariants and operators of the invariant dif-
ferentiation [2–4]. We also found the Casimir operators of the correspond-
ing universal enveloping algebra, the equations generated by the Casimir
operator are integrated and the algebraic independence of the operators of
invariant differentiation and Casimir operator are proved.
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ON COMPLEX MONGE–AMPÈRE EQUATION
ON POSITIVE CURRENTS
OF HIGHER BIDEGREE

Nikitina T.N.

Siberian Federal University, Krasnoyarsk, Russia; AANick@yandex.ru

Let M be a complex manifold and T a positive current in M . If u and f
are smooth differential forms onM we say that (∂∂u)k = f on T if (∂∂u)k∧
T = f ∧ T. The question we study in this paper is whether Monge–Ampère
equation can be solved on T, and, if so, what kinds of estimates one can
find for the solution. Solvability of Monge–Ampère equations in the case
k = 1 is classical (see [1–3]). The next proposition is important in the proof
of the priori inequality for (∂∂u)k-operator. Let e1, . . . , en+l be a basis for
the space of (1, 0)-forms in Cn+l. Write γ =

∑
γJKeJ ∧ eK and partition γ

into a sum τ + σ depending on whether J belongs to K (the τ -part) or not

γ = τ + (
∑p−1

r=1 σr + σ0) = τ + σ.
Proposition. The quadratic form is defined by [γ, γ]σT = cq+pγ ∧ γ ∧

ωn−q−p ∧ T, decompose on positive definite [σr, σr]σT if (−1)p+r = −1 and
negative definite [τ, τ ]σT , [σr, σr]σT if (−1)p+r = 1, 1 ≤ r ≤ p − 1 on the
space of primitive forms in Λp,q

T . (In the case p = 0 form [τ, τ ]σT is positive
definite, under p = 2k + 1 form [σ0, σ0]σT is negative and under p = 2k is
positive definite.)

Proof. Choose a basis e1, . . . , en+l for the space (1, 0)-forms in Cn+l

that diagonalizes both ω and T . Let dVj = iej ∧ ej and dVJ =
∧

J dVj .
Then ω =

∑
dVj , T =

∑
λJdVJ and T ∧ ωn−q−p+1 =

∑
|K|=n+l−q−p+1∑

1≤i1<i2<...<in−q−p+1≤n+l−q−p+1 λK[ki1
ki2

...kin−q−p+1
]dVK if we let

λJ[ji1 ji2 ...jin−q−p+1
] = λj1...ji1−1ji1+1...jin−q−p+1−1jin−q−p+1+1...jn+l−q−p+1

.

Lemma. Let λI ≥ 0 and presuppose
∑
λI = 1. Then∑

J∩L=∅ τJτL
∑

1≤i1<i2<...<iN−l−2p≤N λ(J∪L)c[li1 li2 ...liN−l−2p
]

≤
∑
τJ
∑

1≤i1<i2<...<iN−l−p+1≤N λJc[li1 li2 ...liN−l−p+1
]|2.

Proof. It is sufficient to check the inequality for τ real. We suppose
all τJ pairwise different. The general case follows by continuity. For τ fixed
we assume

F (λ) = F1(λ)+
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+
∑

τJ
∑

1≤s1<...<sN−l−p+1≤N

∑
1≤i1<...<iN−p+1≤N

ji1 ,...,jiN−p+1
[js1 ,...,jsN−l−p+1

]∩J≠∅

λji1 ...jiN−p+1
[js1 ...jsN−l−p+1

]×

×
∑

J∩L ̸=∅
L ̸=J

τL
∑

1≤s1<...<sN−l−p+1≤N

∑
1≤i1<...<iN−p+1≤N

li1 ,...,liN−p+1
[ls1 ,...,lsN−l−p+1

]∩L̸=∅

λli1 ...liN−p+1
[ls1 ...lsN−l−p+1

]+

+
∑

J∩L ̸=∅
J ̸=L

τJτL(1−
∑

1≤s1<s2<...<sN−l−p+1≤N

∑
1≤i1<i2<...<iN−p+1≤N

ji1 ji2 ...jiN−p+1
[js1 js2 ...jsN−l−p+1

]∩J ̸=∅

λji1 ji2 ...jiN−p+1
[js1 js2 ...jsN−l−p+1

]−

−
∑

1≤s1<s2<...<sN−l−p+1≤N

∑
1≤i1<i2<...<iN−p+1≤N

li1 li2 ...liN−p+1
[ls1 ls2 ...lsN−l−p+1

]∩L̸=∅

λli1 li2 ...liN−p+1
[ls1 ls2 ...lsN−l−p+1

])

for λ in the simplex λI ≥ 0,
∑
λI = 1. The proof of the inequality F1(λ) ≥ 0

comes down to the proof of the inequality

∆n
n =

∣∣∣∣∣∣∣∣∣∣∣

(1− λ1)
2 λ1λ2 . . . λ1λn−1 λ1λn

λ2λ1 (1− λ2)
2 . . . λ2λn−1 λ2λn

. . . . . .
. . . . . . . . .

λn−1λ1 λn−1λ2 . . . (1− λn−1)
2 λn−1λn

λnλ1 λnλ2 . . . λnλn−1 (1− λn)
2

∣∣∣∣∣∣∣∣∣∣∣
≥ 0,

here λi ≥ 0,
∑n

i=1 λi = 1.
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PROBLEM IN LIPSCHITZ DOMAINS
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Let G(x, y) be the Green function of a bounded Lipschitz domain Ω in
Rn, n > 2. The Bogdan formula says that (up to constants)

G(x, y) ≈ U(x)U(y)

supz∈Ω: |z−(x+y)/2|6|x−y| U
2(z)

H(x, y),

where U(x) = min{G(x, y0), 1} for some y0 ∈ Ω, ϱ(x) = dist(x, ∂Ω) and

H(x, y) =

{
|x− y|2−n for n > 3 (see [3]),

log ϱ(x)+ϱ(y)+|x−y|e
|x−y| for n = 2 (see [6]).

This formula is employed to prove the following criterion [6].
Theorem 1. Put W−1

p (Ω) = (W̊ 1
q (Ω))

′ for 2 6 p = q/(q−1) <∞, with

W̊ 1
q (Ω) the closure of C∞

0 (Ω) in the Sobolev space W 1
q (Ω). The claim

(∀f ∈W−1
p (Ω)) (∃!u ∈ W̊ 1

p (Ω)) ∆u = f (1)

is equivalent to the Nyström condition

(∃α > 0) (∀a ∈ ∂Ω) (∀β ∈ (0, diamΩ))∫
B(a,β)∩Ω

(U/ϱ)p dx 6 αβn−p sup
B(a,β)∩Ω

Up.
(2)

Remark. This criterion is simpler than the similar criterion from [8].
Remark. Condition (2) has emerged in [5] while studying (1) with

W−1
p (Ω) replaced by the Lebesgue space.
Remark. Alkhutov’s criterion [1] and many other known facts about

(1) may be deduced from Theorem 1 combined with the Carleman–Huber
theorem (on the boundary behavior of U) and the property

(∀τ > −3)

∫
Ω

ϱτU2 dx <∞.
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Now consider 1 < p < ∞ and an integer m > 2. In [7] the author has
shown that the well-posedness

(∀f ∈Wm−2
p (Ω)) (∃!u ∈Wm

p (Ω) ∩ W̊ 1
p (Ω)) ∆u = f (3)

implies the condition Ω ∈ Wm,p which contains the function U and which
is too cumbersome to be exposed here.

Remark. The idea is to combine the Bogdan formula with the straight-
enability theory of Lipschitz domains due to V.G. Maz’ya and T.O. Sha-
poshnikova [4] and the author (consult the references in [7]).

Remark. Probably, the converse implication Ω ∈ Wm,p ⇒ (3) holds if
either m = 2 or U(x) decays no faster than ϱ2(x) as x→ ∂Ω.

Remark. Both the straightenability theory and condition Ω ∈ Wm,p

make use of the Hardy inequality over the family of all dyadic cubes. This
is a particular case of the Hardy inequality on trees. The most important
criteria for this inequality on trees are given in [2, Theorems 3 and 4]. The
author’s paper dedicated to these matters is accepted in Ufa Mathematical
Journal.

The study was carried out within the framework of the state contract of the
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Mathematical models in immunology are represented by a wide set of
differential equations, including delay differential equations. Currently, a
significant number of various mathematical models in immunology have
been created, in particular: G. Bell, 1970–1978, G. I. Marchuk, 1975–1991,
C. Bruni, 1975–1978, A. S. Perelson, 1993–2006, H.T. Banks, 2003–2007,
G.A. Bocharov, 2000–2022, et al. Delay differential equations take into ac-
count the background of the processes describing the appearance of certain
components of the immune response: various cells, antibodies, viral parti-
cles, etc. One of the actively developed areas is related to the construction
and research of mathematical models of HIV-1 infection, Covid-19 infection,
viral hepatitis and other socially significant diseases.

Many mathematical models in immunology can be represented as a sys-
tem of differential equations of the following form:

dxi(t)

dt
= fi(t, xt)− (µi + gi(t, xt))xi(t), t > 0, (1)

xi(t) = ψi(t), t ∈ Iω = [−ω, 0], 1 6 i 6 m, (2)

where xt(θ) = x(t + θ), θ ∈ Iω, t > 0, fi(t, xt) is the rate of appearance
of i-type elements (cells, viral particles, antibodies, etc.), µi + gi(t, xt) is
the intensity of the death of i-type elements or their transformation into
another element, ψi(t) is the number of initial i-type elements, constants
µi > 0, functions ψi(t) are continuous and non-negative, 1 6 i 6 m. The
mappings fi(t, z), gi(t, z) have the following basic properties: 1) for some
constants a1 < 0, . . . , am < 0

fi, gi : R+ × C(Iω, [a1,∞)× · · · × [am,∞)) → R

are continuous, 2) fi, gi : R+ × C(Iω, R
m
+ ) → R+, 1 6 i 6 m. For the

system (1), (2), the conditions of global solvability and non-negativity of
the solution for non-negative initial data are established.
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One of the most important problems in studying the solutions of the
system (1), (2) is the analysis of the stability of equilibrium positions. In
some cases, systems of linear differential equations

dx(t)

dt
=

n∑
i=0

Cix(t− ωi) +

∫ 0

−τ

Cn+1(θ)x(t+ θ)dθ, (3)

often arise, where x(t) = (x1(t), . . . , xm(t))T ∈ Rm, Ci are m×m matrices,
0 6 i 6 n; Cn+1(θ) is m × m matrix with Riemann integrable elements,
constants ω0 = 0, 0 < ωi <∞, 1 6 i 6 n, 0 6 τ <∞.

Some of the systems (3) can be presented in block form

dz(t)

dt
= Qz(t) +

n∑
i=0

Diy(t− ωi) +

∫ 0

−τ

Dn+1(θ)y(t+ θ)dθ, (4)

dy(t)

dt
=

n∑
i=0

Aiy(t− ωi) +

∫ 0

−τ

An+1(θ)y(t+ θ)dθ −By(t), (5)

where x(t) = (z1(t), . . . , zℓ(t), y1(t), . . . , yk(t))
T , ℓ+ k = m,

z(t) = (z1(t), . . . , zℓ(t))
T , y(t) = (y1(t), . . . , yk(t))

T ,

Q is ℓ× ℓ stable matrix; D0, D1, . . . , Dn are ℓ× k, A0, A1, . . . , An are k× k
matrices; Dn+1(θ) is ℓ× k, An+1(θ) is k× k matrices, containing Riemann-
integrable elements; B = diag(b11, . . . , bkk), b11 > 0, . . . , bkk > 0. The
conditions of asymptotic stability or instability of the trivial solution of
system (4), (5) written out in terms of non-singular M-matrices, are given.

Two models of the dynamics of HIV-1 infection over a long and relatively
short period after human infection are given as examples (high-dimensional
non-linear and linear systems of delay differential equations with initial
data). The results of analytical research of models solutions are presented.
In particular, the asymptotic stability of the equilibrium position interpreted
as the absence of HIV-1 infection is investigated. Expressions are given for
the indicator R0 – the basic reproductive number. Analytical studies are
supplemented by the results of numerical experiments using an explicit-
implicit Euler scheme with a constant integration step.

The author was supported by the Russian Science Foundation (project no. 23-

11-00116).
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We consider 2n-parabolic equations with changing time direction. For
such problems smoothness of the initial and boundary data does not ensure
the smoothness of the solution. An application of the theory of singular
equations along with the smoothness of the problem data makes it pos-
sible to additionally indicate necessary and sufficient conditions ensuring
membership of the solution to the smooth spaces.

In contrast to the classical case, the singular Cauchy operator together
with the noncompact integral operators of a special form whose kernels are
approximately homogeneous of degree 1 are among these operators. The
Fredholm property criterion is established for these operators as well as a
formula for the index.

In the article we consider the issues well-posedness of boundary value
problems for 2n-parabolic equations with changing time direction. As it is
shown, solutions of boundary value problems depend both on nonintegral
Hölder exponent and the coefficients of gluing conditions under necessary
and sufficient conditions on input problem data.
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In the present report, we consider the following matrix equation

HA+A∗H − 1

2p
A∗HA+

1

4p
(HA2 + (A∗)2H) = I, (1)

where A is a matrix of size n × n. It is well known that the problem of
location of the spectrum of matrix A in the region bounded by a parabola

P =
{
λ : (Imλ)2 < 2pReλ

}
, p > 0,

is equivalent to the existence of a solution H = H∗ > 0 to equation (1) (see,
for example, [1, 2]). It follows from Krein’s theorem (see [3], Chapter 1)
that there is a unique solution to equation (1) and it can be represented
as a double contour integral. However, this formula presents difficulties
in solving real equations of type (1). In the present report, we give an-
other representation of this solution, which is an analogue of the Lyapunov
formula.

Theorem. Let A be (n×n)-matrix whose eigenvalues are in the domain
P , then the solution to matrix equation (1) can be represented as:

H =
∞∑
k=0

(
−1

4p

)k
( +∞∫

0

. . .

+∞∫
0

e−(t0+···+tk)A
∗

◦
( 2k∑

r=0

Cr
2k(−A∗)2k−rAr

)
e−(t0+···+tk)Adt0 . . . dtk

)
.

The present report continues the research [4].
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Consider the distributed order differentiation operator

D[µ]
x f(x) =

∫
Dt

xf(x)µ (dt) ,

where Dt
x is a fractional derivative of order t with respect to x, µ is an non-

negative Lebesgue–Stieltjes measure, and suppµ ∈ [0, 1) and sup suppµ
> 0.

The report discusses a method for solving initial value problems for a
distributed order evolutionary equation of the form

D[µ]
x u(x) = Lu(x) + f(x), lim

x→0
D[µ1]

x u(x) = a. (1)

Here L is a linear operator that does not depend on x (it is assumed that
u(x), f(x) and a can be elements of some function space, for each fixed x),
and µ1 is the shift of the measure µ by 1. The method makes it possible to
construct solutions of the problem (1) in terms of solutions of the problem

v′(x) = Lv(x) + g(x), v(x) = a.

The method under discussion is based on an integral transform connect-

ing the operators d
dx and D[µ]

x . The kernel of the transform is the Wright
function with distributed parameters [1]. When µ is concentrated at a point

(i.e. supµ = {β}, β ∈ R), the operator D[µ]
x coincides (up to a constant

factor) with the fractional differentiation operator, and the transform under
consideration turns into the Stankovich transform [2, 3].
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We consider the second order parabolic equation

ut +A(x,D)u = f =
r∑

i=1

δ(x− xi)qi(t) + f0, (t, x) ∈ Q = (0, T )×G, (1)

where A(x,D)u = −∆u +
∑n

i=1 ai(x)uxi + a0(x)u, x ∈ G ⊂ Rn. The
equation (1) is furnished with the initial and boundary conditions

u|t=0 = u0, Bu|S = g(t, x), S = (0, T )× Γ, Γ = ∂G, (2)

where Bu = u or Bu = ∂u
∂N +σu =

∑n
i,j=1 aij(t, x)uxj (t, x)νi+σ(t, x)u(t, x),

where ν⃗ = (ν1, . . . , νn) is the outward unit normal to Γ. The unknowns in
(1), (2) are either a solution u and the functions qi(t) (i = 1, 2, . . . , r)
occurring into the right-hand side of (1) or a solution u, the functions qi(t),
and the points {xi} (i = 1, 2, . . . , r). The overdetermination conditions are
as follows:

u|x=bi = ψi(t), i = 1, 2, . . . , s, (3)

where {bi} is a collection of points in G or on Γ.
These problems arise in ecology and in many other fields; in the for-

mer case, u is the pollutant concentration, the points {xi} are locations of
sources, and qi(t) (i = 1, 2, . . . , r) are their intensities. The main results are
connected with numerical methods of solving the problem. Very often the
methods rely on reducing the problem to an optimal control problem and
minimization of the corresponding objective functional [1]. Some theoret-
ical results devoted to the problem (1)–(3) are available in [2]–[4]. In the
article [4] the Dirichlet data on the lateral boundary are complemented with
the Neumann data and these data allow to solve the problem on recovering
the number of sources, their locations, and intensities. The model prob-
lem (1)–(3) (G = Rn) is considered in [5], where the explicit representation
of solutions to the direct problem (the Poisson formula) and an auxiliary
variational problem are employed to determine numerically the quantities∑

i qir
l
ij (here qi(t) = const for all i and rij = |xi − bj |, l = 1, 2, . . .).
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The quantities found allow to determine the points {xi} and intensities
qi. In the one-dimensional case, uniqueness theorem for solutions to the
problem (1)–(3) with r = 1 is stated in [3]. Similar results are presented
also in [6]. Non-uniqueness examples in the problems of recovering of point
sources are presented in [7] and some existence theorems in [8]. We employ
the Laplace transform and asymptotic representations of the corresponding
elliptic problems with a complex parameter to obtain existence and unique-
ness theorems.
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DYNAMICS OF SOLUTION DOMAINS
OF ORDINARY DIFFERENTIAL EQUATIONS

AND STABILITY OVER FINITE TIME INTERVAL
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The report examines the dynamics of the characteristics of domains and
boundaries of domains of solutions of ordinary differential equations (ODEs)
in the study of stability on a finite time interval. The solution areas arise
due to uncertainty in the parameters of differential equations; only the
inequalities that are satisfied by the values of these parameters are known.
The existence and uniqueness conditions are satisfied for each parameter
value. At the same time, the behavior of the areas of exact solutions and
the boundaries of the areas, their uniform boundedness with respect to
the set of initial values and the set of disturbing influences on a finite time
interval are analyzed. Uniform limitation is the basis of practical (technical)
stability. The study of this property of mathematical models of technical
systems arose from the needs of engineering problems in the field of machine
dynamics, design of automatic control systems, radio engineering, rocket
science, etc.

In contrast to the classical formulations of stability according to Lya-
punov, problems of motion stability in real systems occur over a finite time
interval, and at the same time, the initial and permanent disturbances
should not exceed a certain value.

To study the dynamics of solution sets, ODE systems are considered

dy

dt
= f(t, y), y(t0) = y0, y, f, y0 ∈ Rn, (1)

which includes many right-hand sides f(t, y) ∈ F (t, y) and set of initial data
y0 ∈ Y0. This is due to many reasons: data errors, multiple values, approx-
imation of the right-hand sides f by functions that are more convenient for
calculations, etc. The same reasons serve as the basis for the appearance
of many values of the initial data Y0. It is also possible that, in addition
to inaccurately given initial data, the right side of the system is affected by
perturbing actions u(t), about which it is only known that u(t) ∈ U. For
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the problem (1), the set of all solutions is described by the formula

Y (t, Y0) =

{
y(t, y0) : ∀y(t0) ∈ Y0, ∀t ≥ 0,

dy

dt
= f(t, y) + u(t)

}
.

For the problem with perturbing action, the set of all possible solutions
(trajectories) will be written as follows:

Y (t, Y0) =

{
y(t, y0) : ∀y(t0) ∈ Y0, ∀u(t) ∈ U,∀t ≥ 0,

dy

dt
= f(t, y(t), u(t))

}
.

The report describes new results of using symbolic-numerical methods [1]–
[3] for estimating solution sets to study practical stability. For nonlinear
ODE systems that have unique solutions in a certain domain of initial data,
the boundaries of the domains of initial data transform into the boundaries
of the domains of solutions at each specific moment. The class of such
nonlinear ODE systems consists of systems that satisfy the constraints of
uniform boundedness of solutions (Lagrange stability). Sets of solutions to
ODEs, with initial data belonging to the areas of initial data, have complex
boundaries (boundary surfaces in dimension space). For boundaries (sur-
faces) it is impossible to select function formulas with the help of which it
was possible to describe the boundaries. As a preliminary, it is useful to
construct a regularization of estimates of the boundaries of solution sets,
passing to a linear approximation of the original system. Regularization
means finding information about a set of exact solutions. The report pro-
vides examples of calculations.
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Continuum mechanics includes many different branches, the main of
which are: solid mechanics (elasticity, plasticity, damage, fracture, etc.),
fluid mechanics (dynamics of viscous and inviscid fluid, dynamics of vis-
coplastic fluid, multiphase flows, etc.), electrodynamics of moving media,
(magnetohydrodynamics (ideal and resistive), electrodynamics of moving
dielectrics, electromagnetic waves etc.). All of these branches typically use
their own specific governing differential equations to describe their respec-
tive processes. The question arises: is it possible to use single system of
governing equations to describe the processes of all these different disci-
plines?

The answer seems to be positive and we present a unified model of con-
tinuum mechanics [1–3], which makes it possible to simulate processes in
elastic and elastoplastic media, as well as the flow of viscous and inviscid
fluids. This model can be coupled with the electromagnetic field and ex-
tended to continua in the presence of heat transfer and damage of solids.
The governing equations of the unified model belong to the class of hyper-
bolic thermodynamically compatible systems, that is, the system forms a
hyperbolic system of first-order partial differential equations and satisfies
the laws of thermodynamics (energy conservation and entropy growth). All
abovementioned properties of the unified model allow straightforward appli-
cation of advanced high-order numerical methods and ensure the reliability
of numerical solution.

It can be shown by asymptotyc analysis that relaxation limits for hy-
perbolic model of viscous heat conductive media for small relaxation times
give classical Navier–Stokes and Fourier parabolic model for viscous heat
conductive fluid flow.

Further generalization of the unified model can be done for multiphase
flows of miscible fluids and immiscible fluids with surface tension [4], as well
as for deformed porous media saturated with a compressible fluid [5].

A series of numerical test problems is presented, illustrating the appli-
cability of the model for solving problems from various areas of continuum
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mechanics.
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ON ESTIMATES OF SOLUTIONS TO SYSTEMS
OF FUNCTIONAL DIFFERENTIAL EQUATIONS
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Consider the linear autonomous system of functional differential equa-
tions

ẋ(t) +

∫ τ

0

dQ(s)x(t− s) = f(t), t ∈ R+, (1)

where τ ∈ R+, Q : [0, τ ] → Rn is a matrix-function of bounded variation,
Q(0) = Θ, the integrals are understood in the Riemann–Stieltjes sense, the
vector-function f : R+ → Rn is locally integrable. Following [1, p. 9–10],
without loss of generality, we assume the initial function to be a part of
the external perturbation f . We suppose that a solution to system (1) is
a locally absolutely continuous vector-function satisfying (1) almost every-
where. System (1) with a given initial condition x(0) ∈ Rn is uniquely
solvable and its solution is representable in the form [1, p. 84]:

x(t) = X(t)x(0) +

∫ t

0

X(t− s)f(s) ds. (2)

The matrix-function X : R → Rn×n is called the fundamental matrix of
system (1). It is uniquely defined as the solution to the matrix equation
Ẋ(t) +

∫ τ

0
dQ(s)X(t − s) = Θ, t ∈ R+, supplemented by the initial data

X(0) = I, X(ξ) = Θ for ξ < 0. It follows from (2) that the behavior of any
solution to (1) is completely determined by properties of X.

In the matrix Q, separate a part of the elements of the main diagonal
and rewrite system (1) in the form

ẋ(t)+Ax(t)+

∫ ω

0

dR(s)x(t− s) =

∫ σ

0

dP (s)x(t− s)+ f(t), t ∈ R+. (3)

Here A = diag{a1, . . . , an}, ak ∈ R; R(s) = diag{r1(s), . . . , rn(s)}, rk(s) are
monotone functions; all entries of the matrix-function P are nondecreasing;
ω, σ ∈ R+.

The system defined by the left-hand side of (3), we call the comparison
system for system (3). Since the matrices A and R(s) are diagonal, the
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comparison system can be regarded as the family of independent scalar
equations

ẋ(t) + akx(t) +

∫ ω

0

xk(t− s) drk(s) = 0, t ∈ R+, k = 1, n. (4)

The fundamental matrix of the comparison system for system (3) is X0(t) =
diag{x01(t), . . . , x0n(t)}, where x0k are fundamental solutions of (4), and
the characteristic function of the comparison system for (3) is G0(γ) =
diag {g1(γ), . . . , gn(γ)}, where gk are those of (4).

Sharp two-sided exponential estimates for the fundamental solutions to
scalar equations of the form (4) are obtained in [2, 3]. Suppose that the
functions gk have real roots, for k = 1,m the functions rk are nondecreasing
and for k = m+ 1, n the functions rk are nonincreasing. Denote by ζk the
least positive roots of the functions gk. Using [2, 3], we get

Θ ≤ X0(t) ≤ Ne−ζ0t, (5)

where ζ0 = min {ζ1, ζ2, . . . , ζn}, N = diag {− 1
g′
1(ζ1)

, . . . ,− 1
g′
m(ζm) , 1, . . . , 1}.

Let H(γ) = I −G−1
0 (γ)

(
G0(γ)−

∫ σ

0
eγsdP (s)

)
.

Theorem. Suppose that the fundamental matrix of the comparison
system satisfies estimates (5), the matrix H(0) is positively invertible, and
γ0 is the first positive root of the equation detH(γ) = 0. Then for all
γ ∈ [0, γ0), the fundamental matrix of system (1) admits the two-sided
estimate Θ ≤ X(t) ≤ H−1(γ)Ne−γt, t ∈ R+.
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AND INSTABILITY
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Lomonosov Moscow State University, Moscow, Russia;
igniserg@gmail.com

For a given n ∈ N and zero neighborhood G ⊂ Rn, we consider the
differential system

ẋ = f(t, x), f(t, 0) ≡ 0, t ∈ R+ ≡ [0,+∞), x ∈ G, (1)

where f, f ′x ∈ C(R+, G). Let’s put

Bδ ≡ {x0 ∈ Rn | 0 < |x0| < δ}, ∆ ≡ sup{δ | Bδ ⊂ G},

and denote by x(·, x0) a non-extendable solution of system (1) with the
initial value x(0, x0) = x0.

The differential system (1) is completely deterministic, however, it is
possible to give a natural stochastic meaning to its measures of stability
µκ(f) or instability νκ(f) [1, 2]. They allow us to estimate from below
the possibility or impossibility of randomly selecting the initial value x0 of
perturbed solution x(·, x0), arbitrarily close to zero, so that its graph falls
into a given tube of the zero solution in any of the following senses [3, 4]:

a) immediately on the entire time semi-axis (the Lyapunov stability for
κ = λ);

b) at least episodically, but at arbitrarily late points in time (the Perron
stability for κ = π);

c) at least from some moment, but then forever (the upper-limit stability
for κ = σ).

The forerunners of the described measures were the recent concepts of
almost stability and almost complete instability [5], which provide the cor-
responding properties of solutions with a full measure.

Definition 1. We will say that system (1) has the following property
of the Lyapunov, Perron or upper-limit type:
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1) stability (almost stability) if for any ε > 0 there exists δ ∈ (0,∆), such
that any (respectively, almost any in the sense of the Lebesgue measure)
initial value x0 ∈ Bδ satisfies the corresponding requirement

sup
t∈R+

|x(t, x0)| < ε, lim
t→+∞

|x(t, x0)| < ε, lim
t→+∞

|x(t, x0)| < ε; (2)

2) complete instability (almost complete instability) if there exist ε > 0
and δ ∈ (0,∆), such that any (respectively, almost any) initial value x0 ∈ Bδ

does not satisfy the corresponding requirement (2) (which is considered to
be unfulfilled by definition, in particular, when the solution x(·, x0) is not
defined on the entire ray R+).

Definition 2. For system (1), the number

µκ(f) ∈ [0, 1], κ = λ, π, σ,

is called, respectively, the Lyapunov, Perron and upper-limit measure of
stability, if system (1):

a) for each µ < µκ(f) is µ-stable, i.e. for any ε > 0 there exists δε ∈ (0,∆),
such that for every δ ∈ (0, δε) all values x0 ∈ Bδ, satisfying the correspond-
ing requirement (2), form a subset, which relative measure (in the Lebesgue
sense) in Bδ is

Mκ(f, ε, δ) ≥ µ;

b) for each µ > µκ(f) is not µ-stable.
Definition 3. For system (1), the number

νκ(f) ∈ [0, 1], κ = λ, π, σ,

is called, respectively, the Lyapunov, Perron and upper-limit measure of
instability, if system (1):

a) for each ν < νκ(f) is ν-unstable, i.e. for any ε > 0 there exists
δε ∈ (0,∆), such that for every δ ∈ (0, δε) all values x0 ∈ Bδ, unsatisfying
the corresponding requirement (2), form a subset, which relative measure
(in the Lebesgue sense) in Bδ is

Nκ(f, ε, δ) ≥ ν;

b) for each ν > νκ(f) is not ν-unstable.
The correctness of Definitions 2 and 3 is justified by the following theo-

rems.

137



Russian-Chinese Conference “Differential and Difference Equations”

Theorem 1. For any system (1), any ε > 0 and each of the requirements
(2), the sets of all points x0 ∈ G, both satisfying this requirement and not
satisfying it, are measurable.

Theorem 2. For any system (1) the set of all values µ ∈ [0, 1] for which
it is Lyapunov, Perron or upper-limit µ-stable, as well as all values ν ∈ [0, 1],
for which it is ν-unstable, obviously contains the point 0 and represents an
interval, possibly degenerate to this point.

The following two theorems offer specific formulas for measures of sta-
bility and instability and define a set of basic relations linking various mea-
sures.

Theorem 3. For each system (1), the entire six of its Lyapunov, Perron
and upper-limit measures of stability or instability are uniquely defined,
which are respectively given by the formulas

µκ(f) = lim
ε→+0

lim
δ→+0

Mκ(f, ε, δ), νκ(f) = lim
ε→+0

lim
δ→+0

Nκ(f, ε, δ), (3)

where the limits at ε → +0 can be replaced by the lower or, respectively,
upper exact bound on ε > 0.

Theorem 4. For any system (1) the inequalities are satisfied

0 6 µλ(f) 6 µσ(f) 6 µπ(f) 6 1, 0 6 νπ(f) 6 νσ(f) 6 νλ(f) 6 1, (4)

0 6 µκ(f) + νκ(f) 6 1. (5)

Almost stability and almost complete instability are naturally associated
with single values of the corresponding measures, but this logical connection
turns out to be only one-way.

Theorem 5. System (1) has almost stability or almost complete insta-
bility (of some type) if and only if it is 1-stable or, accordingly, 1-unstable
(of that type), and then its measures of stability and instability (of the same
type) are equal to 1 and 0 or, respectively, vice versa.

Theorem 6. For n = 2, there are two autonomous systems of the form
(1), which have neither almost stability nor almost complete instability of
any of the three types: one of them has measures of stability and instabil-
ity of all three types equal to 1 and 0, respectively, and the other is the
opposite.

In the case of a linear system, the Lyapunov and upper-limit measures
can only take their extreme values, which are obviously also realized on the
Perron measures — this is what the following two theorems establish.
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Theorem 7. For any linear system (1), only the following two situations
are possible, and in formulas (3) for all measures of stability and instability
mentioned in them, the lower limits for δ → +0 are exact:

1) either the relations are satisfied

µλ(f) = µσ(f) = µπ(f) = 1 > 0 = νπ(f) = νσ(f) = νλ(f)

and system (1) has stability of all three types;
2) either the relations are satisfied

µλ(f) = µσ(f) = 0 < 1 = νσ(f) = νλ(f)

and system (1) has the Lyapunov and upper-limit almost complete (possibly
even complete) instability.

In addition, in the linear case, the upper-limit complete instability fol-
lows from the Lyapunov one, but the Perron instability does not follow, and
not to any extent.

Theorem 8. For any n ∈ N, each of the situations listed in Theorem 7 is
realized on some limited scalar linear system of the form (1), and the second
situation is realized on at least two systems: one of them is autonomous and
has the Perron complete instability, i.e.

µπ(f) = 0 < 1 = νπ(f),

and the other — the Perron stability, i.e.

µπ(f) = 1 > 0 = νπ(f).

The set of all possible sets of different measures of stability and insta-
bility of one-dimensional systems is finite.

Theorem 9. For n = 1, the measures of stability and instability of any
system (1) satisfy the relations

µλ(f) = µσ(f) 6 µπ(f), νπ(f) 6 νσ(f) = νλ(f), (6)

µκ(f), νκ(f) ∈ {0, 1/2, 1}, µκ(f) + νκ(f) = 1, κ = λ, π, σ. (7)

Theorem 10. For n = 1, both inequalities in chains (6) for some limited
linear system (1) are strict, and the cases of all equalities in these chains
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for each pair of measures of stability and instability specified by conditions
(7) are implemented on some autonomous systems (1).

Theorem 6 simultaneously confirms the realizability of both zero and
one values by all measures of stability or instability for two-dimensional
autonomous systems. Moreover, for such systems the set of implementable
sets of all measures turns out to be quite rich.

Theorem 11. For n = 2, for each individual non-strict inequality in
chains (4) and (5) there are two autonomous systems of the form (1): for one
of them it turns into an equality, and for the other into a strict inequality.

Theorem 12. For n = 2, for any r > 0 there exists an autonomous
system (1), in which the measures of stability of all three types take the
same positive value, as well as all measures of instability, and the ratio of
these two values equals r, and the right inequality in chain (5) turns into
equality.

The following two theorems implement the most contrasting situations
in the autonomous arbitrarily non-one-dimensional case.

Theorem 13. For every integer n > 1, some autonomous system (1)
satisfies the relations

µλ(f) = µσ(f) = 0 < 1 = µπ(f), νπ(f) = νσ(f) = 1 > 0 = νλ(f).

Theorem 14. For every integer n > 1, some autonomous system (1)
satisfies the relations

µλ(f) = 0 < 1 = µσ(f) = µπ(f), νπ(f) = 1 > 0 = νσ(f) = νλ(f).

In the one-dimensional autonomous case, two contrasting situations de-
scribed in Theorems 13 and 14 are impossible.

Theorem 15. For n = 1, for any autonomous system (1) the equalities
are satisfied

µλ(f) = µσ(f) = µπ(f), νπ(f) = νσ(f) = νλ(f).
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The model of the gas absorption process in the sorption column, taking
into account the diffusion in the gas flow, has the form

ut + at + νux = Duxx, 0 < x < l, 0 < t 6 T, (1)

at = φ(u)− a, 0 < x < l, 0 < t 6 T, (2)

u(0, t) = µ(t), u(l, t) + λux(l, t) = 0, 0 6 t 6 T, (3)

a(x, 0) = 0, u(x, 0) = 0, 0 6 x 6 l, (4)

where D – diffusion coefficient; λ – proportionality coefficient between the
intensity of gas flow in the right extreme section of the tube and the dif-
ference in gas concentration in the right section of the tube and outside
the right end of the tube; the function u(x, t) determines the concentration
(density) of gas in the section x of the sorption tube (column) at time t; the
function a(x, t) determines the concentration of gas in the sorbent grains
located inside the tube in the section x at time t; the function µ(t) sets
the concentration of gas in the flow at the inlet to the tube at x = 0; the
function φ(s) is the sorption isotherm, indicating the ratio between the gas
densities in the pores and in the sorbent grains.

In a direct problem (1)–(4), it is required to determine the functions
u(x, t), a(x, t) by given positive values l, T , D, λ and given functions µ(t),
φ(s).

In the inverse problem, by known values l, T , D, λ, the known function
µ(t) and additional given function h(t), such that

h(t) = ux(0, t) ∀t ∈ [0, T ], (5)

it is required to define sorption isotherm φ(s) and functions u(x, t), a(x, t).
The solvability of problem (1)–(4) are proposed by A.M. Denisov, S.R.

Tuikina and A. Lorenzi [1, 2] in the form of conditions on given functions:

µ(t)∈C1[0, T ], 0 < µo 6 µ′(t) 6 µ1 ∀ t∈ [0, T ], µ(0) = µ′(0) = 0, (6)
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φ(s), φ′(s)∈C(−∞,∞), 06φ′(s)6φ0 ∀ s∈(−∞,∞), φ(0) = 0. (7)

When conditions (6), (7) are met, the unique solution of the direct problem
(1)–(4) exists as functions u(x, t), a(x, t)∈C2,1

(
Q̄l,T

)
; such that ut(x, t)>0,

at(x, t)>0, ∀x∈ [0, l] ∀t∈ [0, T ]; 0 6 u(x, t) 6 µ(τ), 0 6 a(x, t) 6 φ
(
µ(τ)

)
,

∀(x, t) ∈ Ql,τ ∀τ ∈ [0, T ], where Ql,T = {(x, t) : 0 < x < l, 0 < t 6 T}.
We consider the possibility of obtaining the solution of problem (1)–(4)

from the integral equation

u(x, t) =
(
1− x

l + λ

)
µ(t)+

+∞∑
n=1

2

l+
(
cos
(√
ω∗
n l
))2

λ̂

∫ t

0

e−(Dω∗
n+β)(t−τ) ×

×
∫ l

0

e
ν

2D (x−s)
[ ν

l+λ
µ(τ)−

(
1− s

l+λ

)
µ′(τ)− φ

(
u(s, τ)

)
+

+

∫ τ

0

e−(τ−θ)φ
(
u(s, θ)

)
dθ
]
sin
(√

ω∗
n s
)
dsdτ sin

(√
ω∗
n x
)
, (x, t)∈Ql,T , (8)

in which the values of ω∗
n are calculated from the algebraic equation

√
ω = − 1

λ̂
tg
(√
ω l
)
. (9)

After determining the solution u(x, t) of equation (8), the function a(x, t)
is calculated by the formula

a(x, t) =

∫ t

0

e−(t−τ)φ
(
u(x, τ)

)
dτ, (x, t) ∈ Ql,T . (10)

The equations (8), (9) and formula (10) can be used for recovering the
solution of the inverse problem (1)–(5).

Work was supported by the National Natural Science Foundation of China
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INVERSE PROBLEM FOR A POPULATION
MODEL WITH NONLOCAL COEFFICIENTS

Shcheglov A.Yu.1, Li S.2
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The mathematical model of population dynamics used here in the form
of a direct problem is presented in the books [1] (p. 153–155) and [2] (p. 160)
as an initial boundary value problem for a nonlinear PDE of I order:

ux(x, t)+ut(x, t) = −µ0(x)u(x, t)−µ1(x)Ψ(S(t))u(x, t), (x, t) ∈ QT , (1)

u(0, t) = Φ(S(t))

∫ l

0

β(ξ)u(ξ, t) dξ, S(t) =

∫ l

0

γ(ξ)u(ξ, t) dξ, t∈ [0, T ], (2)

u(x, 0) = φ(x), x ∈ [0, l], (3)

where QT = {(x, t) : 0 < x 6 l, 0 < t 6 T}, and QT is closing the domain
QT . The function u(x, t) determines the number of individuals of age x in
the population at time t; the functions µ0(x) and µ1(x) characterize the
intensity of mortality of individuals from natural causes and from overpop-
ulation, respectively; the function β(x) is the density of reproduction of
individuals with zero age from a parent of age x; S(t) is the total number
of individuals at time t, taking with a density of γ(x); Ψ(s) is an indicator
of the effect of the total number of individuals on additional mortality from
overpopulation; Φ(s) is an indicator of the influence of the total population
on fertility; φ(x) is initial distribution of individuals.

In a direct problem, it is required to determine the function u(x, t) by
given values l, T and functions µ0(x), µ1(x), Ψ(s), Φ(s), β(x), γ(x), φ(x).

In the inverse problem (IP), by given l > 0 and T > l, it is required to
define functions µ1(x) and u(x, t) by known a ∈ (0, l] for a known function

g(t) = u(a, t), t ∈ [0, l],

given in addition to functions µ0(x), Ψ(s), Φ(s), β(x), γ(x), φ(x).
The beginning of mathematical studies of biological populations with

growth of organisms, can be attributed to the paper of L. Euler [3], the
research is continued by A. Lotka in a large cycle of works (see, for example,
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[4], [5]), and later by a lot of authors [1], [2]. Identification of parameters
in models of age-structured populations dynamics in the form of inverse
problems has been developed in XXI century (see, for example [6], [7]).

The solvability of the direct and the uniqueness for the inverse prob-
lems are presented under assumptions of the considered coefficients’ non-
negativity, which fully corresponds to concepts of the modeled process.

Theorem 1. If the following conditions: l 6 T , µ1(x), φ(x) ∈ C1[0, l];
µ0(x), β(x), γ(x) ∈ C[0, l]; µ0(x), µ1(x), β(x), γ(x) > 0, φ(x) > 0 ∀x ∈ [0, l]
∀t∈ [0, T ]; are met with conditions

φ(0) = Φ(S(0))

∫ l

0

β(ξ)φ(ξ) dξ; (4)

Φ(s),Ψ(s) ∈ C1(R), ∃Φ0,Φ1, LΦ : 0 6 Φ(s), Ψ(s) 6 Φ0; (5)

|Φ′(s)|, |Ψ′(s)|6Φ1; |Φ′(s)−Φ′(ξ)|, |Ψ′(s)−Ψ′(ξ)|6LΦ|s−ξ| ∀s, ξ∈R, (6)
then there is a unique solution u(x, t) ∈ C1(QT ) of the problem (1)–(3).

Theorem 2. If a, l, T , µ0(x), Ψ(s), Φ(s), β(x), γ(x), φ(x), g(t) satisfy
conditions (4)–(6), a = l > 0, T > l, g(t) ∈ C1[0, l]; β(x), γ(x) ∈ C[0, l];
µ0(x), φ(x) ∈ C1[0, l]; β(x), γ(x), µ0(x) > 0, φ(x), g(t) > 0 ∀x, t ∈ [0, l];
g(0)=φ(a), then inverse problem (IP) can have no more than one solution.
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AN INITIAL-BOUNDARY VALUE PROBLEM
FOR A PSEUDOHYPERBOLIC EQUATION

Shemetova V.V.
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We consider the differential equation(
I −∆

)
D2

t u+∆2u− a2∆u = f(t, x), t > 0, x ∈ Rn
+, (1)

with initial conditions

u|t=0 = 0, Dtu|t=0 = 0,

and boundary conditions(
b14D

3
xn
u+ b13D

2
xn
u+ b12Dxnu+ b11u

)∣∣
xn=0

= 0,(
b24D

3
xn
u+ b23D

2
xn
u+ b22Dxnu+ b21u

)∣∣
xn=0

= 0,

where I is the identity operator, ∆ is the Laplace operator with respect to
the spatial variables x = (x′, xn), a ∈ R and bij ∈ R, i, j = 1, 2.

Equation (1) belongs to the class of pseudohyperbolic equations. This
class was introduced in the monograph [1]. Such equations are usually called
Sobolev-type equations after Sobolev’s pioneering works [2]. Differential
equation (1) arises in modeling torsional [3] or longitudinal [4] vibrations of
elastic rods.

Let the Lopatinsky condition hold for boundary value problem with cer-
tain set of coefficients bij . Conditions for the unique solvability of this prob-
lem in anisotropic weighted Sobolev spaces are established and estimates of
solutions are obtained.
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LIMIT CYCLES OF “NORMAL SIZE”
OF LIENARD SYSTEMS OF TYPE 3A+2S
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In the qualitative study of autonomous systems in the plane, the most
difficult problem is to estimate the number of limit cycles, which is not
solved even for the simplest classes of such systems. In this paper we con-
sider the Lienard system:

dx

dt
= y,

dy

dt
= −g(x)− ϵf(x)y, (1)

where f(x) is a first degree polynomial and g(x) = x(1 − x)(1 −Kx)(1 −
Lx)(1−Mx), −1 < L < 0, 0 < K < M < 1, ϵ > 0 is a small parameter.

System (1) can be represented by known transformations in the form of

dx

dt
= y − ϵF (x),

dy

dt
= −g(x). (2)

At such parameter values, the system under consideration has three
antisaddles and two saddles. The results of the studies [2, 3] can be naturally
generalized to the case of five special points.

S. Smale in his paper [4] supported the hypothesis that the Lienard
system (1) in the case g(x) = x, and F (x) is a polynomial of degree 2k + 1
and F (0) = 0, can have at most k limit cycles around the antisaddle O(0, 0).

Hypothesis. In the parameter space of the system (2) with g(x) = x
there exists a region Ω in which the number of limit cycles of the system
(1) does not exceed the number m of zeros of the odd part of the function
F (x), i.e., the positive zeros of the function

φ(x) = F (x)− F (−x)

and also inside Ω there exists a subarea in which this number is equal to m.
The Lienard system (2) is remarkable in that all its special points belong

to the Ox axis.
Definition. Let the Lienard system (1) have an antisaddle A(x0, 0).

Let us denote, by ξ1 (ξ2), the abscissa of the special point nearest to the left
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(right) of A; if there are no special points on the left (right), we consider
ξ1 = −∞ (ξ2 = +∞). We will call the prediction system around the special
point A(x0, 0) for the Lienard system (2) a system of

F (η) = F (µ), G(η) = G(µ),

where F (η) =
∫ η

x0
f(x)dx, G(η) =

∫ η

x0
g(x)dx, ξ1 < η < x0, x0 < µ < ξ2.

The same method is used to construct the systems (1) with the distri-
butions (((1,0),1),1), (((0,0),1),1), (((0,0),2),0), (((0,0),0),2) of limit cycles
of “normal size”.

To accurately estimate the number of limit cycles, we will use the Dulac–
Cherkas function [1].
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APPLICATION OF HILBERT RESOLVENT
FORMULA TO EVALUATION OF INTEGRALS

WITH SPECIAL FUNCTION KERNELS

Sitnik S.M.
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Let consider two important well-known facts from quiet different fields of
mathematics. The first fact is the Hilbert resolvent identity from functional
analysis [1]

Rλ(A)−Rµ(A) = (λ− µ)Rλ(A)Rµ(A), (1)

here A is a linear bounded operator on Banach space, λ and µ are any
complex numbers, Rλ(A) and Rµ(A) are resolvents of A with spectral pa-
rameters λ, µ.

The second fact is a core identity for a resolvent of Riemann–Liouville
fractional integral

Rλf(x) = − 1

λ
f(x)− 1

λ2

x∫
a

Eα,α

(
(x− y)α

λ

)
(x− y)

α−1
f (y) dy, (2)

here Eα,β is the Mittag–Leffler function [2–5]. This formula is due to Hille
and Tamarkin.

The main idea of this research is to substitute the resolvent of Riemann–
Liouville fractional integral (2) into the abstract Hilbert resolvent identity
(1). In this way it is possible to evaluate rather sophisticated integrals from
products of Mittag–Leffler functions. This is a new method for evaluating
integrals of such type.

As an example we present one of similar results concerning evaluation
of integrals with the product of Mittag–Leffler functions.

Theorem. For resolvents of Riemann–Liouville fractional integrals (2)
the next formula is valid as derived from the Hilbert resolvent identity (1):

x∫
t

(y − t)
α−1

(x− y)
α−1

Eα,α

(
(y − t)α

µ

)
Eα,α

(
(x− y)α

λ

)
dy

=
µλ

λ− µ
(x− t)

α−1

(
Eα,α

(
(x− t)α

µ

)
− Eα,α

(
(x− t)α

λ

))
.
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As consequences we list the next integral formulas.
For α = 1 an obvious formula is valid

x∫
t

e
y−t
µ e

x−y
λ dy =

µλ

λ− µ

(
e

x−t
µ − e

x−t
λ

)
.

For α = 2 the next formula is valid
x∫

t

sinh

(
y − t
√
µ

)
sinh

(
x− y√
λ

)
dy

=

√
λµ

λ− µ

(
√
µ sinh

(
x− t
√
µ

)
−√

µ sinh

(
x− t√
λ

))
.

For α = 3 the next formula is valid
x∫

t

(y − t)
2
(x− y)

2
0F2

(
;
4

3
,
5

3
;
(y − t)3

27µ

)
0F2

(
;
4

3
,
5

3
;
(x− y)3

27λ

)
dy

=
2µλ

λ− µ
(x− t)

2

(
0F2

(
;
4

3
,
5

3
;
(x− t)3

27µ

)
− 0F2

(
;
4

3
,
5

3
;
(x− t)3

27λ

))
,

where 0F2 is the Gauss hypergeometric function.
The method may be also applied for more resolvents and special func-

tion kernels. Further examples involve other types of fractional integrals,
general integral operators, resolvents from applied problems of physics and
mechanics.
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MULTI-DIMENSIONAL INTEGRAL TRANSFORMS
WITH H-FUNCTION IN THE KERNEL

IN THE WEIGHTED SPACES
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Multidimensional integral transform

(
Hf
)
(x) =

∞∫
0

Hm,n
p,q

[
xt

∣∣∣∣ (ai, αi)1,p

(bj , βj)1,q

]
f(t)dt (x > 0) (1)

and some of its modifications are studied. Here (see [1; 2; 3, ch. 1; 4])
x = (x1, . . . , xn) ∈ Rn; t = (t1, . . . , tn) ∈ Rn, Rn be the n-dimensional

Euclidean space; x · t =
n∑

n=1
xntn denotes their scalar product; in particular,

x · 1 =
n∑

n=1
xn for 1= (1,. . . ,1). The expression x > t means that x1 >

t1, . . . , xn > tn;
∞∫
0

=
∞∫
0

· · ·
∞∫
0

; by N = {1, 2, . . . } we denote the set of

positive integers, N0 = N
∪
{0}, Nn

0 = N0 × · · · × N0; k = (k1, . . . , kn) ∈
Nn

0 (ki ∈ N0, i = 1, 2, . . . , n) is a multi-index with k! = k1! · · · kn! and
|k| = k1 + · · · + kn; Rn

+ = {x ∈ Rn, x > 0}; for l = (l1, . . . , ln) ∈ Rn
+

Dl = ∂|l|

(∂x1)l1 ···(∂xn)ln
; dt = dt1 · · · dtn; tl = tl1 · · · tln ; f(t) = f(t1, . . . , tn).

Let Cn (n ∈ N) be the n-dimensional space of n complex numbers z =
(z1, . . . , zn) (zj ∈ C, j = 1, 2, · · · , n); d

dx = d
dx1···dxn

; m = (m1, . . . ,mn) ∈
Nn

0 and m1 = · · · = mn; n = (n1, . . . , nn) ∈ Nn
0 and n1 = · · · = nn;

p = (p1, . . . , pn) ∈ N0 and p1 = · · · = pn; q = (q1, . . . , qn) ∈ N0 and
q1 = · · · = qn) (0 ≤ m ≤ q, 0 ≤ n ≤ p); ai = (ai1 , . . . , ain), 1 ≤ i ≤ p,
ai1 , . . . , ain ∈ C (1 ≤ i1 ≤ p1, . . . , 1 ≤ in ≤ pn); bj = (bj1 , . . . , bjn), 1 ≤
j ≤ q, bj1 , . . . , bjn ∈ C (1 ≤ j1 ≤ q1, . . . , 1 ≤ jn ≤ qn); αi = (αi1 , . . . , αin),
1 ≤ i ≤ p, αi1 , . . . , αin ∈ R+

1 (1 ≤ i1 ≤ p1, . . . , 1 ≤ in ≤ pn); βj =

(βj1 , . . . , βjn), 1 ≤ j ≤ q, βj1 , . . . , βjn ∈ R+
1 (1 ≤ j1 ≤ q1, . . . , 1 ≤ jn ≤ qn).

The function Hm,n
p,q

[
xt

∣∣∣∣ (ai,αi)1,p
(bj ,βj)1,q

]
in the kernel of (1) is the product of one
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type H-functions Hm,n
p, q [z] [5, Chapters 1 and 2]:

Hm,n
p,q

[
xt

∣∣∣∣ (ai, αi)1,p

(bj , βj)1,q

]
=

n∏
k=1

Hmk, nk
pk, qk

[
xktk

∣∣∣∣ (aik , αik)1,pk

(bjk , βjk)1,qk

]
.

Our paper is devoted to the study of transform (1) and some of its modifi-
cations in the weighted spaces Lν, r- summable functions f(x)= f(x1, . . . , xn)
on Rn

+, such that

∥f∥ν,r = {
∫
R1

+

xνn·rn−1
n {· · · {

∫
R1

+

xν2·r2−1
2

×[

∫
R1

+

xν1·r1−1
1 |f(x1, . . . , xn)|r1dx1]r2/r1dx2}r3/r2 · · · }rn/rn−1dxn}1/rn <∞

(r = (r1, . . . , rn) ∈ Rn, 1 ≤ r <∞, ν = (ν1, . . . , νn) ∈ Rn, ν1 = · · · = νn).
Some functional and compositional properties of the integral transfor-

mation (1) and of its modifications in spaces Lν, 2 (2 = (2, . . . , 2), ν =
(ν1, . . . , νn) ∈ Rn, ν1 = · · · = νn) have been studied in the works [1, 2, 4].
We continue this research. Mapping properties such as the boundedness, the
range, the representation and the inversion of the transform (1) in weighted
spaces Lν, r are established. The results presented generalize those obtained
in [5, Chapter 4.1] for one-dimensional case.
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ON A MODEL OF IMMUNE RESPONSE
IN PLANTS DESCRIBED BY DELAY
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We consider a model of immune response in plants described by the
system of differential equations with two delays [1]:

d

dt
P (t) = k

(
S(t) +W (t)

)
−ke−ετ1

(
S(t− τ1) +W (t− τ1)

)
− εP (t),

d

dt
S(t) = ke−ετ1

(
S(t− τ1) +W (t− τ1)

)
−S(t)

(
λI(t) + δI(t− τ2) + εS(t)

)
,

d

dt
I(t) = I(t)

(
λS(t)− (z + σ)− δϕI(t− τ2)

)
,

d

dt
R(t) = σI(t) + δϕI(t)I(t− τ2)− εR(t),

d

dt
W (t) = δS(t)I(t− τ2)− εW (t).

Here P (t) is the number of proliferating cells, S(t) is the number of suscepti-
ble cells, I(t) is the number of infected cells, R(t) is the number of recovered
cells, and W (t) is the number of warned cells. The delay parameter τ1 ≥ 0
is responsible for the maturation time of a cell and the delay parameter
τ2 ≥ 0 is the time delay of the immune system’s response to virus infection.
The coefficients of the system are assumed to be constant and nonnegative.
For more detailed description of the model, see [1].

153



Russian-Chinese Conference “Differential and Difference Equations”

We study the asymptotic stability of two equilibrium points correspond-
ing to the state of the system in case of infection and the state of the system
in case of recovery. We indicate estimates for the attraction sets of these
equilibrium points, i.e., we find the conditions for the initial cell numbers
at which the plant becomes infected and the conditions for the initial cell
numbers at which the plant recovers. We establish estimates of solutions
characterizing the rate of infection and the rate of recovery. When obtaining
the results, various Lyapunov–Krasovskii functionals are used [2].

The results are published in [3, 4].
The study was carried out within the framework of the state contract of the

Sobolev Institute of Mathematics (project no. FWNF-2022-0008).
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BOUNDARY VALUE PROBLEMS FOR A SPECIAL
CLASS OF DEGENERATE HYPERBOLIC

EQUATIONS
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In the work, the solvability of boundary value problems for a special class
of degenerate second-order hyperbolic equations is studied. The equations’
peculiarity is that they have two independent variables, each of them can
be considered as time variable. The purpose of the work is to prove exis-
tence and uniqueness of regular solutions, i.e., solutions having all Sobolev
generalized derivatives included in the appropriate equation.
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STOCHASTIC MODELING OF CONDITIONAL
PROCESSES OF SPECIAL TYPE
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To solve problems of forecasting and interpolation of meteorological pro-
cesses and fields, the method of stochastic modeling of conditional Gaussian
and non-Gaussian processes and fields is often used. In the Russian liter-
ature, significant attention has been paid to these issues; there is a large
number of works related to the modeling of conditional processes with point
conditions. Work [2] describes algorithms for modeling conditional Gaussian
processes for fixed values at given points. The methods are based on the
following methods: the well-known Kriging method, a method for modeling
a Gaussian vector with a conditional mean and a conditional covariance ma-
trix using the Cholesky decomposition of the conditional covariance matrix.
An earlier paper [4] presents an algorithm for modeling Gaussian condi-
tional processes and fields that does not require the Cholesky decomposi-
tion of the conditional covariance matrix. Work [6] describes an algorithm
for modeling conditional non-Gaussian processes and fields with given one-
dimensional distributions and point conditions. Work [3] also discusses the
issues of modeling processes with interval conditions. To solve problems of
numerical stochastic modeling of Gaussian and non-Gaussian conditional
processes and fields with point conditions, in the simplest case it is nec-
essary to know mathematical expressions for conditional one-dimensional
probability distributions. If they are known, then modeling of conditional
processes can be carried out using the well-known method of “conditional
distributions” [1, 5, 7].

This paper examines some models of multivariate distributions associ-
ated with mixtures of normal distributions, obtains expressions for the corre-
sponding multivariate distributions, and describes algorithms for modeling
certain types of conditional processes. We considered the representation of
the multidimensional distribution density of a vector consisting of two sub-
vectors in the form of a product of two densities. The first is a weighted sum
of two multivariate normal densities, and the second is a weighted sum of
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two multivariate conditional normal densities. The number of variables in
these densities corresponds to the dimension of the subvectors of the vector
under consideration. The paper obtained an expression for the final density,
consisting of a weighted sum of four normal distributions, and also investi-
gated the properties of this distribution. In particular, it is shown that for
a certain class of covariance matrices, the final probability distribution has
the form of a superposition of two normal distributions. The paper presents
algorithms for modeling conditional and unconditional random vectors that
take into account the specifics of the distributions considered. These algo-
rithms are significantly more economical than algorithms based on the elim-
ination method [1], which is usually used to model conditional processes.
The resulting distributions, in particular, can be used to approximate the
distributions of hydrometeorological parameters.
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ON THE SOLVABILITY OF SOME CLASSES
OF NON-LOCAL PROBLEMS FOR HIGH ORDER

SOBOLEV TYPE EQUATIONS

Tarasova G. I.

Ammosov North-Eastern Federal University, Yakutsk, Russia;
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The report presents new results on the solvability of non-local boundary
value problems for Sobolev type differential equations of the form

∂p

∂tp
(Au) +Bu = f(x, t)

with second order operators A and B on spatial variables. A special feature
of the problems is that the nonlocal condition in them is a generalized
Samarsky–Ionkin condition.
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TWO-MAGNON SYSTEM IN THE FOUR-SPIN
EXCHANGE HAMILTONIAN

Tashpulatov S.M.
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In crystals, it is also necessary to take into account that in addition to
the two-spin exchange, there is also a multi-spin exchange. In the general
case, the isotropic exchange Hamiltonian has the form

H ′ = −
∑
n

∑
<f>

Jn(f1, f2, . . . , fn)(
−→
S f1

−→
S f2) . . . (

−→
S f2n−1

−→
S f2n).

For the first time, attention was drawn to the existence of multi-spin ex-
change in [1] when analyzing the quasi-polar model of metal, although, in
fact, the considerations given there were based only on the properties of
the symmetry of the exchange interaction. Here we consider two-magnon
system with four-exchange Hamiltonian. Hamiltonian of the considering
system has the form

H ′′ = J
∑
m,τ

(
−→
S m

−→
S m+τ )(

−→
S m+2τ

−→
S m+3τ ),

where J < 0 is a parameter,
−→
S m = (Sx

m, S
y
m, S

z
m) is the atom spin oper-

ator in the site m ∈ Zν , τ = ±ej , j = 1, 2, . . . , ν, here ej are unit mutu-
ally orthogonal vectors. Hamiltonian H ′′ acts in the symmetric Fock space
Hsymm. We let φo denote the vector, called the vacuum, uniquely defined
be the conditions S+

mφ0 = 0, and Sz
mφ0 = sφ0, where ||φ0|| = 1. We set

S±
m = Sx

m ± iSy
m, where S

+
m and S−

m are the magnon creation and annihi-
lation operators at the site m. The vectors S−

mS
−
n φ0 describes the state of

the system of two magnons at the sites m and n with spin s. The vector
space spanned be them denoted by H2. We denote the restriction of H ′′ to
the space H2 by H ′′

2 .
Theorem 1. The space H2 is invariant under the operator H ′′. The

operator H
′′

2 is a bounded self-adjoint operator; it generates a bounded

self-adjoint operator H
′′

2 acting in the space l2((Z
ν)2) as

(H
′′

2f)(p, q) = J
∑
p,q,τ

{[2s2δp,q+2τ + 2s2δp+2τ,q + s2δp+τ,q + s2δp,q+τ
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+s2δp+3τ,q+s
2δp,q+3τ ]f(p, q)+(−s2δp+3τ,q−2s2δp+2τ,q−s2δp+τ,q)f(p−τ, q)
+(−s2δp,q+3τ − 2s2δp,q+2τ − s2δp,q+τ )f(p, q − τ)

+(−s2δp+3τ,q − 2s2δp+2τ,q − s2δp+τ,q)f(p+ τ, q)

+(−s2δp,q+3τ − 2s2δp,q+2τ − s2δp,q+τ )f(p, q+ τ) + 2s2δp+2τ,qf(p− τ, q− τ)

+(s2δp+3τ,q + s2δp,q+τ )f(p+ τ, q− τ) + (s2δp,q+3τ + s2δp+τ,q)f(p− τ, q+ τ)

+2s2δp+2τ,qf(p+ τ, q + τ)},

where δk,j is the Kronecker symbol. The operator H
′′

2 acts on the vector

ψ ∈ H2 by the formula H
′′

2 ψ =
∑

p,q(H
′′

2f)(p, q)S
−
p S

−
q φ0.

Theorem 2. The Fourier transform of operator H
′′

2 is an operator

H̃
′′

2 = FH
′′

2F−1 acting in the space Lsymm
2 ((T ν)2) be the formula

(H̃
′′

2 f)(λ, µ) = J
ν∑

i=1

∫
T ν

f(s,Λ− s){8s2 cos(Λ− 2s) cos(Λ− 2λ)

+4s2 cos(
3Λ

2
− 3s) cos(

3Λ

2
− 3λ)− 4s2 cos(

Λ

2
− 2s) cos(

3Λ

2
− 3λ)

−4s2 cos s cos(Λ− 2λ)− 4s2 cos(2Λ− 3s) cos(Λ− 2λ)

−4s2 cos(
3Λ

2
− 2s) cos(

Λ

2
− λ)− 4s2 cos(Λ− 3s) cos(Λ− λ)

+4s2 cos 2s cos(
Λ

2
− λ) + 4s2 cos(

3Λ

2
− 3s) cos(

Λ

2
− λ)

−4s2 cos(Λ− s) cos(Λ− 2λ)− 4s2 cos(
3Λ

2
− 2s) cos(

3Λ

2
− 3λ)

+4s2 cos(Λ− 2λ− s) cos(Λ− 2λ) + 4s2 cos(2Λ− 2s) cos(Λ− 2λ)}ds.

Theorem 3. Let ν = 1. The continuous spectrum of the operator H̃
′′

2 is

consists of the point 0 and discrete spectrum of the operator H̃
′′

2 is consists
of no more than six eigenvalues.
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VISCOSITY SOLUTIONS OF EQUATIONS
WITH NON-STANDARD GROWTH CONDITIONS
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In the report we will consider the following equation with non-standard
growth conditions, which has a large number of applications in mechanics:

ut −
n∑

i=1

(|uxi |pi(t)−2uxi)xi = B(t, x, u,∇u) in ΩT = (0, T )× Ω. (1)

For now there is an extensive literature concerning the existence, uniqueness
and qualitative behavior of solutions to boundary value problems for (1).
When studying equations of the form (1), methods of the calculus of vari-
ations, various topological, and also approximation methods are used. Due
to the degeneracy and even possible singularity of equations of the form (1),
solutions are sought in the class of weak solutions, mainly Sobolev solutions.
In this regard, we note the monograph by S. Antontsev and S. Shmarev [1].

As noted above, one of the ways to study the existence of solutions to
boundary value problems for (1) is an approximation one, which we, in par-
ticular, use to prove the existence of solutions to boundary value problems
for (1) that have high smoothness. To this end, we regularize the original
problem and prove the existence of classical solutions to regularized prob-
lems. Using the Minty–Browder monotonicity method, it is possible to carry
out the passage to the limit in the family of classical solutions of regularized
problems and obtain solvability in the class of Sobolev solutions. But this
can only be done if B(t, x, u,∇u) is linear in the gradient. Otherwise, the
obtained a priori estimates of classical solutions of regularized problems do
not make it possible to make such a passage to the limit.

This problem can essentially be overcome using the theory of viscosity
solutions, for which the passage to the limit can be carried out with much
weaker a priori estimates. Viscosity solutions belong to the category of weak
solutions, but are defined not in an integral sense, like Sobolev solutions, but
pointwise, through smooth sub- and supersolutions of the original equation.
These smooth sub- and supersolutions, as in the theory of weak Sobolev
solutions, play the role of test functions.

161



Russian-Chinese Conference “Differential and Difference Equations”

Using this tools, it is possible to prove existence theorems even for
B(t, x, u,∇u), which does not satisfy the Bernstein–Nagumo condition, that
is, having an arbitrary growth with respect to the gradient. The use of the
tools of the theory of viscosity solutions allowed us to avoid the procedure of
passing to the limit in the gradient terms. The existence theorem is proven
based on the following fact: the uniform limit of a sequence of viscosity
solutions is also a viscosity solution.

Thus, we were able to prove the existence and uniqueness of a Lipschitz-
continuous viscosity solution to the first initial-boundary value problem for
equations of the form (1) in the case where B(t, x, u,∇u) has arbitrary
growth in gradient [2].

The obtained results are closely related to the theory of the existence of
classical solutions of elliptic and parabolic equations.

The study was carried out within the framework of the state contract of the

Sobolev Institute of Mathematics (project no. FWNF-2022-0008).
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ULTRAPARABOLIC EQUATIONS
WITH DEGENERACY
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Let Ω and G be bounded domains in spaces Rn and Rm of variables
x = (x1, . . . , xn) and y = (y1, . . . , ym) respectively, c(x, y), f(x, y), αk(y),
k = 1, . . . ,m, are given functions defined when x ∈ Ω, y ∈ G, ∆ is a Laplace
operator with respect to variables x1, . . . , xn. We study the solvability of
various boundary value problems for differential equations

∆u+

m∑
k=1

αk(y)uyk
= f(x, y), (x, y) ∈ Q.

We prove theorems of the existence and uniqueness of regular solutions, i.e.,
solutions having all Sobolev generalized derivatives included in the equation.
Some properties of solutions are also studied.
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NONLOCAL BOUNDARY VALUE PROBLEMS
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We study of the solvability of nonlocal boundary value problems for
differential equations

uxt − auxx −∆yu+ c(x, y, t)u = f(x, y, t)

(0 < x < 1, 0 < t < T < +∞, y ∈ Ω ⊂ Rm, ∆ is the Laplace operator
in the space of variables y1, . . . , ym, a is a real number). The work aim is
to prove the existence and uniqueness of regular solutions to the problems
under study, i.e., solutions that have all Sobolev derivatives included in the
equation.
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SPHERICAL POLYHARMONIC EQUATION
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Let S be the sphere of unit radius in Rn, n ≥ 2. The projection of an
arbitrary point x in Rn, x ̸= 0, to S will be denoted by θ; i.e., we assume
that θ = x/ρ, where ρ = |x|. So θ is a point in S. In what follows, the
integrals over θ are surface integrals over dS. Let us consider the differential
equation of the form

(−D)mu(θ) = p(θ), (1)

where D is the Laplace–Beltrami operator with respect to dθ [1], m is a
positive integer, and p(θ) is a continuous function on S which obey the
orthogonality condition

∫
p(θ) dθ = 0. The main results of the talk are about

the solutions to (1). They are formulated in the following two theorems [2].
Theorem 1. Let m be an integer and m > (n − 1)/2. Then for every

functional l(θ) in C∗(S) with (l, 1) = 0, the problem

(−D)mu(θ) = l(θ),

∫
u(θ) dθ = 0, (2)

has a unique solution u(θ) in the spherical Sobolev space Hm. For m ≥
(3n− 2)/4 the solution to (2) belongs to the space C(2m−3n/2+1)(S).

The expansion of u(θ) in the series has the form

u(θ) =
∞∑
k=1

1

km(n+ k − 2)m

σ(k)∑
l=1

(l, Yk,l)Yk,l(θ).

Here the set of functions {Yk, l(θ) | l = 1, 2, . . . , σ(k)} constitute an or-
thonormal basis for the space of spherical harmonics of order k:∫

Yk,l(θ)Yk,p(θ) dθ = δpl .
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Theorem 2. Let p(θ) be a member of the spherical Sobolev space Hs

for some s > (n− 1)/2 and the equality
∫
p(θ) dθ = 0 holds. Then there is

a unique solution to the spherical polyharmonic equation

(−D)mu(θ) = p(θ)

such that it is orthogonal to the identically-one function and belongs to the
space Hq for q = s+ 2m. The function u(θ) can be written as follows

u(θ) =

∫
G(θ · θ′)p(θ′) dθ′,

where the function G(θ · θ′) is the Green’s function of (−D)m.
The definition of G(θ · θ′) is as follows

G(θ · θ′) = 1

σn−1

∞∑
k=1

σ(k)

km(n+ k − 2)
mG

(n)
k (θ · θ′). (3)

Here G
(n)
k is the normalized Hegenbauer polynomial.

For s > (n − 1)/2 the series on the right-hand side of (3) converges
absolutely and uniformly. For two points θ and θ(j) in S the function
G(θ · θ(j)) is a solution to the equation

(−D)mG(θ · θ(j)) = δ(θ − θ(j))− 1

σn−1

∫
δ(θ − θ′) dθ′.

Spherical polyharmonic equation (1) with error functionals in the right
hand side is very important in the theory of cubature formulas [3–4].

The study was carried out within the framework of the state contract of the

Sobolev Institute of Mathematics (project no. FWNF-2022-0008).
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SOLVABILITY OF LYAPUNOV-TYPE
MATRIX EQUATIONS
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We study the relationship between the solvability of matrix equations of
the form

N∑
j,k=0

αjk(A
∗)jHAk = C, (1)

where A is (n×n)-matrix, the right side C is (n×n)-matrix too, αjk are nu-
merical coefficients, and belonging of the spectrum of matrix A to sets lying
inside or outside domains bounded by an ellipse or a parabola. Conditions
for perturbations of matrix elements are obtained, which guarantee that the
spectrum of matrix A+B belongs to the mentioned domains. Under these
conditions on perturbations B, corresponding matrix equations

N∑
j,k=0

αjk((A+B)∗)jH(A+B)k = C

are uniquely solvable.
Some theorems on the solvability of matrix equations of the form (1) are

contained in [1–4].
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OUTPUT FEEDBACK STABILIZATION
OF LINEAR SYSTEMS WITH MULTIPLE DELAYS

USING MODEL REDUCTION METHODS

Wang Z.
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This paper investigates the output feedback for large-scale linear sys-
tems with multiple delays. Firstly, we obtain a structure-preserving low-
dimensional time-delay system by using the two-level orthogonal Arnoldi
process. Then, we transform the state of the low dimensional time-delay
system into the output variables of the system through linear transforma-
tion, thus the input-output relationship of the system is established directly,
and the output feedback controller is designed for this system. Finally, based
on the argument principle, we examine the stability of the closed-loop sys-
tem. And a numerical example is exhibited to verify the efficiency of the
algorithms.

Consider the following linear system with multiple delays: ẋ(t) = A0x(t) +

q∑
i=1

Aix(t− τi) +Bu(t),

y(t) = Cx(t),

(1)

where A0, Ai ∈ Rn×n, i = 1, 2, . . . , q, B ∈ Rn×m, C ∈ Rp×n. x(t) ∈ Rn is
the state vector, u(t) ∈ Rm is the input vector, and y(t) ∈ Rp is the output
vector. τi, i = 1, 2, . . . , q, are time-delays, and we assume that 0 < τ1 <
τ2 < . . . < τq.

For a large-scale unstable time-delay system (1), we consider an output
feedback controller with the following structure:

u(t) = −F0y(t)−
q∑

i=1

Fiy(t− τi), (2)

where F0, Fi ∈ Rm×p (i = 1, 2, . . . , q) are output feedback gain matrices.
The number of output variables of the system is generally less than that of
the state variables, and all of them can be measured directly. Therefore,
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the output feedback control is easy to realize in engineering practice. From
(1) and (2), we obtain the closed-loop system

ẋ(t) = (A0 −BF0C)x(t) +

q∑
i=1

(Ai −BFiC)x(t− τi). (3)

We now present the main result in this paper.
Algorithm.
Step 1. Applying the two-level orthogonal Arnoldi process to the system

(1), we can obtain the standard orthogonal basis of Krylov subspace.
Step 2. Using the subspace projection technique, we directly project

the state of system (1) onto the subspace to obtain a reduced time-delay
system, and the state of reduced time-delay system is transformed into the
output variables of system through linear transformation.

Step 3. We apply optimization techniques to design the output feedback
controller to stabilize the low dimensional time-delay system.

Step 4. Substituting the output feedback controller into system (1), we
utilize the argument principle (see [3], Algorithm 1) to check the stability
of the closed-loop system (3). If the closed-loop system is asymptotically
stable, we complete the controller design.
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In this paper, we studied the delay-dependent stability of neutral delay
differential equations (NDDEs). Runge–Kutta methods with time-accurate
and highly-stable explicit operators (TASE-RK) are proposed to solve the
NDDEs. By applying the argument principle, we obtained sufficient condi-
tions for delay-dependent stability of TASE-RK.

The NDDEs are described as

u′(t) = Lu(t) +

m∑
j=1

[Mju(t− τj) +Nju
′(t− τj)],

m∑
j=1

||Nj || < 1,

where u(t) ∈ Rd, L,Mj , Nj ∈ Rd×d are parameter matrices, τj > 0 (j =
1, . . . ,m), and τm > τm−1 > · · · > τ1.

For a linear model dY
dt = LY , reference [2] proposed a family of operators

T
(p)
L such that dY

dt = (T
(p)
L )Y is nearly unconditionally stable by using s-

stage p-th order explicit RK,

T
(p)
L (α, h) =


(1− αhL)−1, p = 1,

2p−1T
(p−1)
L (α2 , h)− T

(P )
L (α, h)

2p−1 − 1
, p ≥ 2,

where h is time-step, α > 0 is parameter which guarantees the stability of

the explicit RK methods. T
(p)
L = 1 +O(hp) ensures the time accuracy.

We extend this method to NDDEs,

un+1 = un +
s∑

i=1

biKn,i,

170



Russian-Chinese Conference “Differential and Difference Equations”

Kn,i = T
(p)
a+b+c · (hL(un +

i−1∑
j=1

aijKn,j) + h
m∑

k=1

Mk(un−m +
i−1∑
j=1

aijKn−m,j)

+

m∑
k=1

NkKn−m,i), i = 1, 2, . . . , s.

It has stronger stability than explicit RK when α > 0. Furthermore,
the TASE1-RK1 is unconditionally stable when α > 0.5. Its characteristic
polynomial is

P (z) = det

{[
Isd − h(A

⊗
T

(p)
a+b+cL) 0

−bT
⊗
Id Id

]
zm+1

−
[

0 h(e
⊗
T

(p)
a+b+cL)

0 Id

]
zm

−
m∑

k=1

[
(h(A

⊗
T

(p)
a+b+cMk) + Is

⊗
T

(p)
a+b+cNk)z h(e

⊗
T

(p)
a+b+cMk)

0 0

]}
.

Theorem. For a TASE-RK method, assume that
(1) the NDDEs are asymptotically stable;
(2) the TASE-RK method is natural;
(3) the characteristic polynomial P (z) ̸= 0 on µ = {z : |z| = 1} and

1

2π
△µ argP (z) = d(s+ 1)(m+ 1).

then the TASE-RK method for NDDEs is delay-dependent stability.
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We consider a system of linear inhomogeneous functional difference equa-
tions with constant coefficients and two delays

y(t) = A1y(t− τ1) +A2y(t− τ2) + f(t), t > 0, (1)

where Aj , j = 1, 2, are constant (n× n)-matrices, τ1 = lτ2, l > 0 is integer,
τ2 > 0, f(t) is a continuous vector function satisfying the estimate

∥f(t)∥ ≤ ae−bt, a, b > 0.

Without using information about the spectrum of matrices A1 and A2,
we establish estimates for solutions y(t) to system (1) for t > 0. We indicate
conditions on matrices A1 and A2, under which the solutions to system (1)
tend to zero as t→ +∞ at an exponential rate.
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We consider a system of inhomogeneous functional difference equations

x(t) = Ax(t− τ) + f(t), t > 0, (1)

where A is constant (n × n)-matrix, all eigenvalues of which belong to the
unit circle, f(t) is a continuous vector function satisfying the estimate

∥f(t)∥ ≤ αe−γt, α, γ > 0.

Our aim is to obtain estimates for solutions x(t) to system (1) for t > 0 and
to investigate the influence of perturbations on the behavior of the solutions.

Using a solution to the discrete Lyapunov equation [1], estimates char-
acterizing the exponential decay of solutions to system (1) at infinity are
obtained. Systems with perturbations are considered and estimates of solu-
tions for perturbed systems are established. Statements about continuous
dependence of solutions to the initial value problems for the considered
systems of inhomogeneous functional difference equations are proved.
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We consider a class of systems of differential equations with distributed
delay

d

dt
y(t) = A(t)y(t) +

t−τ1∫
t−τ2

B(t, t− s)y(s) ds, (1)

where A(t) is a matrix of dimension n × n with continuous T -periodic el-
ements, B(t, s) is a matrix of dimension n × n with continuous T -periodic
with respect to first variable elements, τ2 > τ1 > 0 are constants.

Sufficient conditions for the exponential stability of the zero solution
to (1) are given, estimates of solutions that characterize the exponential
decrease at infinity are established. We use a functional

v(t, y) = ⟨H(t)y(t), y(t)⟩+
τ2∫

τ1

t∫
t−η

⟨K(t− s, η)y(s), y(s)⟩ dsdη

that is an analogue to the functionals introduced in [1, 2].
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This talk is based on some recent work by the speaker of this talk and
his colleagues. We present two new phase-field models, which were for-
mulated in [1, 2] by H.-D. Alber and the speaker, for phase transitions
driven by configurational forces in elastically deformable solids. These mod-
els consist of a linear elasticity subsystem coupled to a nonlinear, degenerate
parabolic equation of second or fourth order, and the two models differ, re-
spectively, from the well-known Allen–Cahn and Cahn–Hilliard models by
a non-smooth gradient term of an order parameter. Some numerical and
theoretical results about one of these models are then stated, and we re-
fer the reader to [3–6] for more results. Their applications include: (1) To
describe martensitic phase transitions in, e.g., shape memory alloys, and
(2) To model sintering in powder metallurgy.
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